import os import numpy as np from cliport.tasks.task import Task from cliport.utils import utils import pybullet as p class PackingBoxes(Task): """pick up randomly sized boxes and place them tightly into a container.""" def __init__(self): super().__init__() self.max_steps = 20 self.lang_template = "pack all the boxes inside the brown box" self.task_completed_desc = "done packing boxes." self.zone_bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.08]]) self.additional_reset() def reset(self, env): super().reset(env) # Add container box. zone_size = self.get_random_size(0.05, 0.3, 0.05, 0.3, 0.05, 0.05) zone_pose = self.get_random_pose(env, zone_size) container_template = 'container/container-template.urdf' replace = {'DIM': zone_size, 'HALF': (zone_size[0] / 2, zone_size[1] / 2, zone_size[2] / 2)} # IMPORTANT: REPLACE THE TEMPLATE URDF container_urdf = self.fill_template(container_template, replace) env.add_object(container_urdf, zone_pose, 'fixed') margin = 0.01 min_object_dim = 0.05 bboxes = [] # Split container space with KD trees. stack_size = np.array(zone_size) stack_size[0] -= 0.01 stack_size[1] -= 0.01 root_size = (0.01, 0.01, 0) + tuple(stack_size) root = utils.TreeNode(None, [], bbox=np.array(root_size)) utils.KDTree(root, min_object_dim, margin, bboxes) colors = [utils.COLORS[c] for c in utils.COLORS if c != 'brown'] # Add objects in container. object_ids = [] bboxes = np.array(bboxes) object_template = 'box/box-template.urdf' # Compute object points that are needed for zone for bbox in bboxes: size = bbox[3:] - bbox[:3] position = size / 2. + bbox[:3] position[0] += -zone_size[0] / 2 position[1] += -zone_size[1] / 2 pose = (position, (0, 0, 0, 1)) pose = utils.multiply(zone_pose, pose) # IMPORTANT: REPLACE THE TEMPLATE URDF urdf = self.fill_template(object_template, {'DIM': size}) icolor = np.random.choice(range(len(colors)), 1).squeeze() box_id = env.add_object(urdf, pose, color=colors[icolor]) object_ids.append(box_id) # Randomly select object in box and save ground truth pose. object_volumes = [] true_poses = [] for object_id in object_ids: true_pose = p.getBasePositionAndOrientation(object_id) object_size = p.getVisualShapeData(object_id)[0][3] object_volumes.append(np.prod(np.array(object_size) * 100)) pose = self.get_random_pose(env, object_size) p.resetBasePositionAndOrientation(object_id, pose[0], pose[1]) true_poses.append(true_pose) self.add_goal(objs=object_ids, matches=np.eye(len(object_ids)), targ_poses=true_poses, replace=False, rotations=True, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1) self.lang_goals.append(self.lang_template)