Spaces:
Runtime error
Runtime error
fix hydra problem
Browse files- app.py +27 -21
- cliport/cfg/data.yaml +1 -1
- gensim/sim_runner.py +34 -17
app.py
CHANGED
@@ -3,13 +3,13 @@ import numpy as np
|
|
3 |
from tempfile import NamedTemporaryFile
|
4 |
import copy
|
5 |
import shapely
|
|
|
6 |
from shapely.geometry import *
|
7 |
from shapely.affinity import *
|
8 |
from omegaconf import OmegaConf
|
9 |
from moviepy.editor import ImageSequenceClip
|
10 |
import gradio as gr
|
11 |
|
12 |
-
|
13 |
from consts import ALL_BLOCKS, ALL_BOWLS
|
14 |
from md_logger import MarkdownLogger
|
15 |
|
@@ -37,12 +37,17 @@ from gensim.sim_runner import SimulationRunner
|
|
37 |
from gensim.memory import Memory
|
38 |
from gensim.utils import set_gpt_model, clear_messages
|
39 |
|
|
|
40 |
class DemoRunner:
|
41 |
-
|
42 |
def __init__(self):
|
43 |
self._env = None
|
|
|
|
|
|
|
44 |
|
45 |
def setup(self, api_key):
|
|
|
46 |
openai.api_key = api_key
|
47 |
cfg['model_output_dir'] = 'temp'
|
48 |
cfg['prompt_folder'] = 'topdown_task_generation_prompt_simple_singleprompt'
|
@@ -56,15 +61,16 @@ class DemoRunner:
|
|
56 |
self.simulation_runner = SimulationRunner(cfg, agent, critic, memory)
|
57 |
|
58 |
info = '### Build'
|
59 |
-
img = np.zeros((720, 640,
|
60 |
|
61 |
return info, img
|
62 |
|
63 |
def run(self, instruction):
|
|
|
64 |
cfg['target_task_name'] = instruction
|
65 |
|
66 |
-
self._env.cache_video = []
|
67 |
-
self._md_logger.clear()
|
68 |
|
69 |
try:
|
70 |
self.simulation_runner.task_creation()
|
@@ -72,21 +78,21 @@ class DemoRunner:
|
|
72 |
except Exception as e:
|
73 |
return f'Error: {e}', None, None
|
74 |
|
75 |
-
video_file_name = None
|
76 |
-
if self._env.cache_video:
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
return
|
82 |
|
83 |
|
84 |
def setup(api_key):
|
85 |
if not api_key:
|
86 |
return 'Please enter your OpenAI API key!', None, None
|
87 |
-
|
88 |
demo_runner = DemoRunner()
|
89 |
-
|
90 |
info, img = demo_runner.setup(api_key)
|
91 |
return info, img, demo_runner
|
92 |
|
@@ -98,6 +104,7 @@ def run(instruction, demo_runner):
|
|
98 |
|
99 |
|
100 |
if __name__ == '__main__':
|
|
|
101 |
with open('README.md', 'r') as f:
|
102 |
for _ in range(12):
|
103 |
next(f)
|
@@ -120,22 +127,21 @@ if __name__ == '__main__':
|
|
120 |
|
121 |
with gr.Row():
|
122 |
with gr.Column():
|
123 |
-
|
124 |
inp_instruction = gr.Textbox(label='Task Name', lines=1)
|
125 |
btn_run = gr.Button("Run (this may take 30+ seconds)")
|
126 |
info_run = gr.Markdown(label='Generated Code')
|
127 |
with gr.Column():
|
128 |
video_run = gr.Video(label='Video of Last Instruction')
|
129 |
-
|
130 |
btn_setup.click(
|
131 |
-
setup,
|
132 |
inputs=[inp_api_key],
|
133 |
outputs=[info_setup, img_setup, state]
|
134 |
)
|
135 |
btn_run.click(
|
136 |
-
run,
|
137 |
-
inputs=[inp_instruction, state],
|
138 |
-
outputs=[info_run,
|
139 |
)
|
140 |
-
|
141 |
demo.queue().launch(show_error=True)
|
|
|
3 |
from tempfile import NamedTemporaryFile
|
4 |
import copy
|
5 |
import shapely
|
6 |
+
from hydra.core.global_hydra import GlobalHydra
|
7 |
from shapely.geometry import *
|
8 |
from shapely.affinity import *
|
9 |
from omegaconf import OmegaConf
|
10 |
from moviepy.editor import ImageSequenceClip
|
11 |
import gradio as gr
|
12 |
|
|
|
13 |
from consts import ALL_BLOCKS, ALL_BOWLS
|
14 |
from md_logger import MarkdownLogger
|
15 |
|
|
|
37 |
from gensim.memory import Memory
|
38 |
from gensim.utils import set_gpt_model, clear_messages
|
39 |
|
40 |
+
|
41 |
class DemoRunner:
|
42 |
+
|
43 |
def __init__(self):
|
44 |
self._env = None
|
45 |
+
GlobalHydra.instance().clear()
|
46 |
+
hydra.initialize(version_base="1.2", config_path='cliport/cfg')
|
47 |
+
self._cfg = hydra.compose(config_name="data")
|
48 |
|
49 |
def setup(self, api_key):
|
50 |
+
cfg = self._cfg
|
51 |
openai.api_key = api_key
|
52 |
cfg['model_output_dir'] = 'temp'
|
53 |
cfg['prompt_folder'] = 'topdown_task_generation_prompt_simple_singleprompt'
|
|
|
61 |
self.simulation_runner = SimulationRunner(cfg, agent, critic, memory)
|
62 |
|
63 |
info = '### Build'
|
64 |
+
img = np.zeros((720, 640, 3))
|
65 |
|
66 |
return info, img
|
67 |
|
68 |
def run(self, instruction):
|
69 |
+
cfg = self._cfg
|
70 |
cfg['target_task_name'] = instruction
|
71 |
|
72 |
+
# self._env.cache_video = []
|
73 |
+
# self._md_logger.clear()
|
74 |
|
75 |
try:
|
76 |
self.simulation_runner.task_creation()
|
|
|
78 |
except Exception as e:
|
79 |
return f'Error: {e}', None, None
|
80 |
|
81 |
+
# video_file_name = None
|
82 |
+
# if self._env.cache_video:
|
83 |
+
# rendered_clip = ImageSequenceClip(self._env.cache_video, fps=25)
|
84 |
+
# video_file_name = NamedTemporaryFile(suffix='.mp4').name
|
85 |
+
# rendered_clip.write_videofile(video_file_name, fps=25)
|
86 |
+
info = '### Run'
|
87 |
+
return info, self.simulation_runner.video_path
|
88 |
|
89 |
|
90 |
def setup(api_key):
|
91 |
if not api_key:
|
92 |
return 'Please enter your OpenAI API key!', None, None
|
93 |
+
|
94 |
demo_runner = DemoRunner()
|
95 |
+
|
96 |
info, img = demo_runner.setup(api_key)
|
97 |
return info, img, demo_runner
|
98 |
|
|
|
104 |
|
105 |
|
106 |
if __name__ == '__main__':
|
107 |
+
os.environ['GENSIM_ROOT'] = os.getcwd()
|
108 |
with open('README.md', 'r') as f:
|
109 |
for _ in range(12):
|
110 |
next(f)
|
|
|
127 |
|
128 |
with gr.Row():
|
129 |
with gr.Column():
|
|
|
130 |
inp_instruction = gr.Textbox(label='Task Name', lines=1)
|
131 |
btn_run = gr.Button("Run (this may take 30+ seconds)")
|
132 |
info_run = gr.Markdown(label='Generated Code')
|
133 |
with gr.Column():
|
134 |
video_run = gr.Video(label='Video of Last Instruction')
|
135 |
+
|
136 |
btn_setup.click(
|
137 |
+
setup,
|
138 |
inputs=[inp_api_key],
|
139 |
outputs=[info_setup, img_setup, state]
|
140 |
)
|
141 |
btn_run.click(
|
142 |
+
run,
|
143 |
+
inputs=[inp_instruction, state],
|
144 |
+
outputs=[info_run, video_run]
|
145 |
)
|
146 |
+
|
147 |
demo.queue().launch(show_error=True)
|
cliport/cfg/data.yaml
CHANGED
@@ -25,7 +25,7 @@ dataset:
|
|
25 |
|
26 |
# record videos (super slow)
|
27 |
record:
|
28 |
-
save_video:
|
29 |
save_video_path: ${data_dir}/${task}-${mode}/videos/
|
30 |
add_text: False
|
31 |
add_task_text: True
|
|
|
25 |
|
26 |
# record videos (super slow)
|
27 |
record:
|
28 |
+
save_video: True
|
29 |
save_video_path: ${data_dir}/${task}-${mode}/videos/
|
30 |
add_text: False
|
31 |
add_task_text: True
|
gensim/sim_runner.py
CHANGED
@@ -22,8 +22,10 @@ from gensim.utils import (
|
|
22 |
)
|
23 |
import pybullet as p
|
24 |
|
|
|
25 |
class SimulationRunner:
|
26 |
""" the main class that runs simulation loop """
|
|
|
27 |
def __init__(self, cfg, agent, critic, memory):
|
28 |
self.cfg = cfg
|
29 |
self.agent = agent
|
@@ -46,19 +48,24 @@ class SimulationRunner:
|
|
46 |
self.generated_task_programs = []
|
47 |
self.generated_task_names = []
|
48 |
self.generated_tasks = []
|
49 |
-
self.passed_tasks = []
|
|
|
|
|
50 |
|
51 |
def print_current_stats(self):
|
52 |
""" print the current statistics of the simulation design """
|
53 |
print("=========================================================")
|
54 |
-
print(
|
|
|
55 |
print("=========================================================")
|
56 |
|
57 |
def save_stats(self):
|
58 |
""" save the final simulation statistics """
|
59 |
self.diversity_score = compute_diversity_score_from_assets(self.task_asset_logs, self.curr_trials)
|
60 |
-
save_stat(self.cfg, self.cfg['model_output_dir'], self.generated_tasks,
|
61 |
-
|
|
|
|
|
62 |
print("Model Folder: ", self.cfg['model_output_dir'])
|
63 |
print(f"Total {len(self.generated_tasks)} New Tasks:", [task['task-name'] for task in self.generated_tasks])
|
64 |
try:
|
@@ -66,7 +73,6 @@ class SimulationRunner:
|
|
66 |
except:
|
67 |
pass
|
68 |
|
69 |
-
|
70 |
def task_creation(self):
|
71 |
""" create the task through interactions of agent and critic """
|
72 |
self.task_creation_pass = True
|
@@ -93,16 +99,15 @@ class SimulationRunner:
|
|
93 |
# self.curr_task_name = self.generated_task['task-name']
|
94 |
print("task creation time {:.3f}".format(time.time() - start_time))
|
95 |
|
96 |
-
|
97 |
def setup_env(self):
|
98 |
""" build the new task"""
|
99 |
env = Environment(
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
|
107 |
task = eval(self.curr_task_name)()
|
108 |
task.mode = self.cfg['mode']
|
@@ -118,15 +123,15 @@ class SimulationRunner:
|
|
118 |
print(f"Mode: {task.mode}")
|
119 |
|
120 |
# Start video recording
|
121 |
-
if record:
|
122 |
-
|
123 |
|
124 |
return task, dataset, env, expert
|
125 |
|
126 |
def run_one_episode(self, dataset, expert, env, task, episode, seed):
|
127 |
""" run the new task for one episode """
|
128 |
add_to_txt(
|
129 |
-
|
130 |
record = self.cfg['record']['save_video']
|
131 |
np.random.seed(seed)
|
132 |
random.seed(seed)
|
@@ -138,6 +143,12 @@ class SimulationRunner:
|
|
138 |
reward = 0
|
139 |
total_reward = 0
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
# Rollout expert policy
|
142 |
for _ in range(task.max_steps):
|
143 |
act = expert.act(obs, info)
|
@@ -149,6 +160,12 @@ class SimulationRunner:
|
|
149 |
if done:
|
150 |
break
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
episode.append((obs, None, reward, info))
|
153 |
return total_reward
|
154 |
|
@@ -159,10 +176,10 @@ class SimulationRunner:
|
|
159 |
env_success_cnt = 0.
|
160 |
seed = 123
|
161 |
self.curr_trials += 1
|
162 |
-
|
163 |
if p.isConnected():
|
164 |
p.disconnect()
|
165 |
-
|
166 |
if not self.task_creation_pass:
|
167 |
print("task creation failure => count as syntax exceptions.")
|
168 |
return
|
|
|
22 |
)
|
23 |
import pybullet as p
|
24 |
|
25 |
+
|
26 |
class SimulationRunner:
|
27 |
""" the main class that runs simulation loop """
|
28 |
+
|
29 |
def __init__(self, cfg, agent, critic, memory):
|
30 |
self.cfg = cfg
|
31 |
self.agent = agent
|
|
|
48 |
self.generated_task_programs = []
|
49 |
self.generated_task_names = []
|
50 |
self.generated_tasks = []
|
51 |
+
self.passed_tasks = [] # accepted ones
|
52 |
+
|
53 |
+
self.video_path = ""
|
54 |
|
55 |
def print_current_stats(self):
|
56 |
""" print the current statistics of the simulation design """
|
57 |
print("=========================================================")
|
58 |
+
print(
|
59 |
+
f"{self.cfg['prompt_folder']} Trial {self.curr_trials} SYNTAX_PASS_RATE: {(self.syntax_pass_rate / (self.curr_trials)) * 100:.1f}% RUNTIME_PASS_RATE: {(self.runtime_pass_rate / (self.curr_trials)) * 100:.1f}% ENV_PASS_RATE: {(self.env_pass_rate / (self.curr_trials)) * 100:.1f}%")
|
60 |
print("=========================================================")
|
61 |
|
62 |
def save_stats(self):
|
63 |
""" save the final simulation statistics """
|
64 |
self.diversity_score = compute_diversity_score_from_assets(self.task_asset_logs, self.curr_trials)
|
65 |
+
save_stat(self.cfg, self.cfg['model_output_dir'], self.generated_tasks,
|
66 |
+
self.syntax_pass_rate / (self.curr_trials),
|
67 |
+
self.runtime_pass_rate / (self.curr_trials), self.env_pass_rate / (self.curr_trials),
|
68 |
+
self.diversity_score)
|
69 |
print("Model Folder: ", self.cfg['model_output_dir'])
|
70 |
print(f"Total {len(self.generated_tasks)} New Tasks:", [task['task-name'] for task in self.generated_tasks])
|
71 |
try:
|
|
|
73 |
except:
|
74 |
pass
|
75 |
|
|
|
76 |
def task_creation(self):
|
77 |
""" create the task through interactions of agent and critic """
|
78 |
self.task_creation_pass = True
|
|
|
99 |
# self.curr_task_name = self.generated_task['task-name']
|
100 |
print("task creation time {:.3f}".format(time.time() - start_time))
|
101 |
|
|
|
102 |
def setup_env(self):
|
103 |
""" build the new task"""
|
104 |
env = Environment(
|
105 |
+
self.cfg['assets_root'],
|
106 |
+
disp=self.cfg['disp'],
|
107 |
+
shared_memory=self.cfg['shared_memory'],
|
108 |
+
hz=480,
|
109 |
+
record_cfg=self.cfg['record']
|
110 |
+
)
|
111 |
|
112 |
task = eval(self.curr_task_name)()
|
113 |
task.mode = self.cfg['mode']
|
|
|
123 |
print(f"Mode: {task.mode}")
|
124 |
|
125 |
# Start video recording
|
126 |
+
# if record:
|
127 |
+
# env.start_rec(f'{dataset.n_episodes+1:06d}')
|
128 |
|
129 |
return task, dataset, env, expert
|
130 |
|
131 |
def run_one_episode(self, dataset, expert, env, task, episode, seed):
|
132 |
""" run the new task for one episode """
|
133 |
add_to_txt(
|
134 |
+
self.chat_log, f"================= TRIAL: {self.curr_trials}", with_print=True)
|
135 |
record = self.cfg['record']['save_video']
|
136 |
np.random.seed(seed)
|
137 |
random.seed(seed)
|
|
|
143 |
reward = 0
|
144 |
total_reward = 0
|
145 |
|
146 |
+
save_data = self.cfg['save_data']
|
147 |
+
# Start recording video (NOTE: super slow)
|
148 |
+
if record:
|
149 |
+
video_name = f'{dataset.n_episodes + 1:06d}'
|
150 |
+
env.start_rec(video_name)
|
151 |
+
|
152 |
# Rollout expert policy
|
153 |
for _ in range(task.max_steps):
|
154 |
act = expert.act(obs, info)
|
|
|
160 |
if done:
|
161 |
break
|
162 |
|
163 |
+
# End recording video
|
164 |
+
if record:
|
165 |
+
env.end_rec()
|
166 |
+
self.video_path = os.path.join(self.cfg['record']['save_video_path'],
|
167 |
+
f"{video_name}.mp4")
|
168 |
+
|
169 |
episode.append((obs, None, reward, info))
|
170 |
return total_reward
|
171 |
|
|
|
176 |
env_success_cnt = 0.
|
177 |
seed = 123
|
178 |
self.curr_trials += 1
|
179 |
+
|
180 |
if p.isConnected():
|
181 |
p.disconnect()
|
182 |
+
|
183 |
if not self.task_creation_pass:
|
184 |
print("task creation failure => count as syntax exceptions.")
|
185 |
return
|