Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
from cliport.tasks.task import Task | |
from cliport.utils import utils | |
import pybullet as p | |
class PackingSeenGoogleObjectsSeq(Task): | |
""": Place the specified objects in the brown box following the order prescribed in the language | |
instruction at each timestep.""" | |
def __init__(self): | |
super().__init__() | |
self.max_steps = 6 | |
self.lang_template = "pack the {obj} in the brown box" | |
self.task_completed_desc = "done packing objects." | |
self.object_names = self.get_object_names() | |
self.additional_reset() | |
def get_object_names(self): | |
return utils.google_all_shapes | |
def reset(self, env): | |
super().reset(env) | |
# object names | |
object_names = self.object_names[self.mode] | |
# Add container box. | |
zone_size = self.get_random_size(0.2, 0.35, 0.2, 0.35, 0.05, 0.05) | |
zone_pose = self.get_random_pose(env, zone_size) | |
container_template = 'container/container-template_DIM_HALF.urdf' | |
replace = {'DIM': zone_size, 'HALF': (zone_size[0] / 2, zone_size[1] / 2, zone_size[2] / 2)} | |
container_urdf = self.fill_template(container_template, replace) | |
env.add_object(container_urdf, zone_pose, 'fixed') | |
margin = 0.01 | |
min_object_dim = 0.08 | |
bboxes = [] | |
# Split container space with KD trees. | |
stack_size = np.array(zone_size) | |
stack_size[0] -= 0.01 | |
stack_size[1] -= 0.01 | |
root_size = (0.01, 0.01, 0) + tuple(stack_size) | |
root = utils.TreeNode(None, [], bbox=np.array(root_size)) | |
utils.KDTree(root, min_object_dim, margin, bboxes) | |
# Add Google Scanned Objects to scene. | |
object_ids = [] | |
bboxes = np.array(bboxes) | |
scale_factor = 5 | |
object_template = 'google/object-template_FNAME_COLOR_SCALE.urdf' | |
chosen_objs, repeat_category = self.choose_objects(object_names, len(bboxes)) | |
object_descs = [] | |
for i, bbox in enumerate(bboxes): | |
size = bbox[3:] - bbox[:3] | |
max_size = size.max() | |
position = size / 2. + bbox[:3] | |
position[0] += -zone_size[0] / 2 | |
position[1] += -zone_size[1] / 2 | |
shape_size = max_size * scale_factor | |
pose = self.get_random_pose(env, size) | |
# Add object only if valid pose found. | |
if pose[0] is not None: | |
# Initialize with a slightly tilted pose so that the objects aren't always erect. | |
slight_tilt = utils.q_mult(pose[1], (-0.1736482, 0, 0, 0.9848078)) | |
ps = ((pose[0][0], pose[0][1], pose[0][2]+0.05), slight_tilt) | |
object_name = chosen_objs[i] | |
object_name_with_underscore = object_name.replace(" ", "_") | |
mesh_file = os.path.join(self.assets_root, | |
'google', | |
'meshes_fixed', | |
f'{object_name_with_underscore}.obj') | |
texture_file = os.path.join(self.assets_root, | |
'google', | |
'textures', | |
f'{object_name_with_underscore}.png') | |
try: | |
replace = {'FNAME': (mesh_file,), | |
'SCALE': [shape_size, shape_size, shape_size], | |
'COLOR': (0.2, 0.2, 0.2)} | |
urdf = self.fill_template(object_template, replace) | |
box_id = env.add_object(urdf, ps) | |
object_ids.append((box_id, (0, None))) | |
texture_id = p.loadTexture(texture_file) | |
p.changeVisualShape(box_id, -1, textureUniqueId=texture_id) | |
p.changeVisualShape(box_id, -1, rgbaColor=[1, 1, 1, 1]) | |
object_descs.append(object_name) | |
except Exception as e: | |
print("Failed to load Google Scanned Object in PyBullet") | |
print(object_name_with_underscore, mesh_file, texture_file) | |
print(f"Exception: {e}") | |
self.set_goals(object_descs, object_ids, repeat_category, zone_pose, zone_size) | |
for i in range(480): | |
p.stepSimulation() | |
def choose_objects(self, object_names, k): | |
repeat_category = None | |
return np.random.choice(object_names, k, replace=False), repeat_category | |
def set_goals(self, object_descs, object_ids, repeat_category, zone_pose, zone_size): | |
# Random picking sequence. | |
num_pack_objs = np.random.randint(1, len(object_ids)) | |
object_ids = object_ids[:num_pack_objs] | |
true_poses = [] | |
for obj_idx, (object_id, _) in enumerate(object_ids): | |
true_poses.append(zone_pose) | |
self.add_goal(objs=[object_id], matches=np.int32([[1]]), targ_poses=[zone_pose], replace=False, | |
rotations=True, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1 / len(object_ids)) | |
self.lang_goals.append(self.lang_template.format(obj=object_descs[obj_idx])) | |
# Only mistake allowed. | |
self.max_steps = len(object_ids)+1 | |