GenSim / gensim /prepare_finetune_gpt.py
LeroyWaa's picture
add gensim code
8fc2b4e
raw
history blame
4.16 kB
import cv2
import numpy as np
import IPython
import os
import openai
import pandas as pd
import json
import subprocess
from gensim.utils import set_gpt_model, clear_messages, format_finetune_prompt
def format_completion(task_name, descriptions, code):
completion_text = f" \n {task_name}: {descriptions}``` \n\n###"
completion_text += "Implementation: \n ```python\n" + code + "``` \n END"
return completion_text
# test if using the finetuned model can generate better task coed than the base model
# https://platform.openai.com/docs/guides/fine-tuning
data_path = 'prompts/data'
def load_offline_memory():
"""get the current task descriptions, assets, and code"""
base_task_path = os.path.join(data_path, "base_tasks.json")
base_asset_path = os.path.join(data_path, "base_assets.json")
base_task_code_path = os.path.join(data_path, "base_task_codes.json")
base_tasks = json.load(open(base_task_path))
base_assets = json.load(open(base_asset_path))
base_task_codes = json.load(open(base_task_code_path))
generated_task_path = os.path.join(data_path, "generated_tasks.json")
generated_asset_path = os.path.join(data_path, "generated_assets.json")
generated_task_code_path = os.path.join(data_path, "generated_task_codes.json")
# print("original base task num:", len(base_tasks))
base_tasks.update(json.load(open(generated_task_path)))
# base_assets.update(json.load(open(generated_asset_path)))
for task in json.load(open(generated_task_code_path)):
if task not in base_task_codes:
base_task_codes.append(task)
# print("current base task num:", len(base_tasks))
return base_tasks, base_assets, base_task_codes
code_buffer = {}
base_tasks, base_assets, base_task_codes = load_offline_memory()
TOTAL_DATASET_TOKENS = 0
added_tasks = []
df = pd.DataFrame()
for task_file in base_task_codes:
## TODO(lirui): consider adding more structure here.
task_name = task_file[:-3].replace("_", "-")
if task_name in added_tasks:
continue
if task_name not in base_tasks:
print(f"{task_name} missing")
continue
added_tasks.append(task_name)
task_description = base_tasks[task_name]
if os.path.exists("cliport/tasks/" + task_file):
task_code = open("cliport/tasks/" + task_file).read()
# the generated cliport task path
elif os.path.exists("cliport/generated_tasks/" + task_file):
task_code = open("cliport/generated_tasks/" + task_file).read()
prompt = format_finetune_prompt(task_name)
completion = format_completion(task_name, task_description, task_code)
# rough estimates
TOTAL_DATASET_TOKENS += len(prompt) / 4
TOTAL_DATASET_TOKENS += len(completion) / 4
new_row = { 'prompt': prompt,
'completion': completion}
new_row = pd.DataFrame([new_row])
df = pd.concat([df, new_row], axis=0, ignore_index=True)
df.to_csv("prompts/finetune_data.csv",index=False)
print("======================================")
print("estimate number of tokens:", TOTAL_DATASET_TOKENS)
print("estimate price for davinci:", TOTAL_DATASET_TOKENS / 1000 * 0.03)
print("total number of instructions:", len(df))
print("======================================")
# actual finetuning
## prepared_data.csv --> prepared_data_prepared.json
subprocess.run('openai tools fine_tunes.prepare_data --file prompts/finetune_data.csv --quiet'.split())
print("now you can run \n openai api fine_tunes.create --training_file prompts/finetune_data_prepared.jsonl --model davinci --suffix 'GenSim'")
# Model Training Usage
# Ada $0.0004 / 1K tokens $0.0016 / 1K tokens
# Curie $0.0030 / 1K tokens $0.0120 / 1K tokens
# Davinci $0.0300 / 1K tokens $0.1200 / 1K tokens
# ## Start fine-tuning
# openai api fine_tunes.create --training_file output/finetune_data_prepared.jsonl --model davinci --suffix "GenSim"
# subprocess.run('openai api fine_tunes.create --training_file output/finetune_data_prepared.jsonl --model davinci --suffix "GenSim"'.split())
# Tracking Finetune Status
# openai api fine_tunes.follow -i
# openai api fine_tunes.get -i
# openai wandb sync