Spaces:
Runtime error
Runtime error
import numpy as np | |
from cliport.utils import utils | |
from cliport.agents.transporter import TransporterAgent | |
from cliport.models.streams.one_stream_attention_lang_fusion import OneStreamAttentionLangFusion | |
from cliport.models.streams.one_stream_transport_lang_fusion import OneStreamTransportLangFusion | |
from cliport.models.streams.two_stream_attention_lang_fusion import TwoStreamAttentionLangFusion | |
from cliport.models.streams.two_stream_transport_lang_fusion import TwoStreamTransportLangFusion, TwoStreamTransportLangFusionLatReduce, TwoStreamTransportLangFusionLatPretrained18 | |
from cliport.models.streams.two_stream_attention_lang_fusion import TwoStreamAttentionLangFusionLat, TwoStreamAttentionLangFusionLatReduce | |
from cliport.models.streams.two_stream_transport_lang_fusion import TwoStreamTransportLangFusionLatReduceOneStream | |
from cliport.models.streams.two_stream_transport_lang_fusion import TwoStreamTransportLangFusionLat | |
import torch | |
import time | |
class TwoStreamClipLingUNetTransporterAgent(TransporterAgent): | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_one_fcn = 'plain_resnet' | |
stream_two_fcn = 'clip_lingunet' | |
self.attention = TwoStreamAttentionLangFusion( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = TwoStreamTransportLangFusion( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
def attn_forward(self, inp, softmax=True): | |
inp_img = inp['inp_img'] | |
if type(inp_img) is not torch.Tensor: | |
inp_img = torch.from_numpy(inp_img).to('cuda').float().contiguous() | |
lang_goal = inp['lang_goal'] | |
out = self.attention.forward(inp_img.float(), lang_goal, softmax=softmax) | |
return out | |
def attn_training_step(self, frame, backprop=True, compute_err=False): | |
inp_img = frame['img'] | |
if type(inp_img) is not torch.Tensor: | |
inp_img = torch.from_numpy(inp_img).to('cuda').float() | |
p0, p0_theta = frame['p0'], frame['p0_theta'] | |
lang_goal = frame['lang_goal'] | |
inp = {'inp_img': inp_img, 'lang_goal': lang_goal} | |
out = self.attn_forward(inp, softmax=False) | |
return self.attn_criterion(backprop, compute_err, inp, out, p0, p0_theta) | |
def trans_forward(self, inp, softmax=True): | |
inp_img = inp['inp_img'] | |
if type(inp_img) is not torch.Tensor: | |
inp_img = torch.from_numpy(inp_img).to('cuda').float() | |
p0 = inp['p0'] | |
lang_goal = inp['lang_goal'] | |
out = self.transport.forward(inp_img.float(), p0, lang_goal, softmax=softmax) | |
return out | |
def transport_training_step(self, frame, backprop=True, compute_err=False): | |
inp_img = frame['img'] | |
p0 = frame['p0'] | |
p1, p1_theta = frame['p1'], frame['p1_theta'] | |
lang_goal = frame['lang_goal'] | |
inp = {'inp_img': inp_img, 'p0': p0, 'lang_goal': lang_goal} | |
out = self.trans_forward(inp, softmax=False) | |
err, loss = self.transport_criterion(backprop, compute_err, inp, out, p0, p1, p1_theta) | |
return loss, err | |
def act(self, obs, info, goal=None): # pylint: disable=unused-argument | |
"""Run inference and return best action given visual observations.""" | |
# Get heightmap from RGB-D images. | |
img = self.test_ds.get_image(obs) | |
lang_goal = info['lang_goal'] | |
# Attention model forward pass. | |
pick_inp = {'inp_img': img, 'lang_goal': lang_goal} | |
pick_conf = self.attn_forward(pick_inp) | |
pick_conf = pick_conf[0].permute(1, 2, 0).detach().cpu().numpy() | |
# | |
argmax = np.argmax(pick_conf) | |
# import IPython; IPython.embed() | |
argmax = np.unravel_index(argmax, shape=pick_conf.shape) | |
p0_pix = argmax[:2] | |
p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2]) | |
# Transport model forward pass. | |
place_inp = {'inp_img': img, 'p0': p0_pix, 'lang_goal': lang_goal} | |
place_conf = self.trans_forward(place_inp) | |
place_conf = place_conf.squeeze().permute(1, 2, 0) | |
place_conf = place_conf.detach().cpu().numpy() | |
argmax = np.argmax(place_conf) | |
argmax = np.unravel_index(argmax, shape=place_conf.shape) | |
p1_pix = argmax[:2] | |
p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2]) | |
# Pixels to end effector poses. | |
hmap = img[:, :, 3] | |
p0_xyz = utils.pix_to_xyz(p0_pix, hmap, self.bounds, self.pix_size) | |
p1_xyz = utils.pix_to_xyz(p1_pix, hmap, self.bounds, self.pix_size) | |
p0_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p0_theta)) | |
p1_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p1_theta)) | |
return { | |
'pose0': (np.asarray(p0_xyz), np.asarray(p0_xyzw)), | |
'pose1': (np.asarray(p1_xyz), np.asarray(p1_xyzw)), | |
'pick': [p0_pix[0], p0_pix[1], p0_theta], | |
'place': [p1_pix[0], p1_pix[1], p1_theta], | |
} | |
class TwoStreamClipFilmLingUNetLatTransporterAgent(TwoStreamClipLingUNetTransporterAgent): | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_one_fcn = 'plain_resnet_lat' | |
stream_two_fcn = 'clip_film_lingunet_lat' | |
self.attention = TwoStreamAttentionLangFusionLat( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = TwoStreamTransportLangFusionLat( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
class TwoStreamClipLingUNetLatTransporterAgent(TwoStreamClipLingUNetTransporterAgent): # This is our model | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_one_fcn = 'plain_resnet_lat' | |
stream_two_fcn = 'clip_lingunet_lat' | |
self.attention = TwoStreamAttentionLangFusionLat( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = TwoStreamTransportLangFusionLat( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
class TwoStreamClipLingUNetLatTransporterAgentReduce(TwoStreamClipLingUNetTransporterAgent): # This is our model | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_one_fcn = 'plain_resnet_lat' | |
stream_two_fcn = 'clip_lingunet_lat' | |
self.attention = TwoStreamAttentionLangFusionLat( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = TwoStreamTransportLangFusionLatReduce( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
class TwoStreamClipLingUNetLatTransporterAgentReduceOneStream(TwoStreamClipLingUNetTransporterAgent): # This is our model | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_one_fcn = 'plain_resnet_lat' | |
stream_two_fcn = 'clip_lingunet_lat' | |
self.attention = TwoStreamAttentionLangFusionLatReduce( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = TwoStreamTransportLangFusionLatReduceOneStream( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
class TwoStreamClipLingUNetLatTransporterAgentReducePretrained(TwoStreamClipLingUNetTransporterAgent): # This is our model | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_one_fcn = 'plain_resnet_lat' | |
stream_two_fcn = 'clip_lingunet_lat' | |
self.attention = TwoStreamAttentionLangFusionLat( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = TwoStreamTransportLangFusionLatPretrained18( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
class TwoStreamRN50BertLingUNetTransporterAgent(TwoStreamClipLingUNetTransporterAgent): | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_one_fcn = 'plain_resnet' | |
stream_two_fcn = 'rn50_bert_lingunet' | |
self.attention = TwoStreamAttentionLangFusion( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = TwoStreamTransportLangFusion( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
class TwoStreamUntrainedRN50BertLingUNetTransporterAgent(TwoStreamClipLingUNetTransporterAgent): | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_one_fcn = 'plain_resnet' | |
stream_two_fcn = 'untrained_rn50_bert_lingunet' | |
self.attention = TwoStreamAttentionLangFusion( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = TwoStreamTransportLangFusion( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
class TwoStreamRN50BertLingUNetLatTransporterAgent(TwoStreamClipLingUNetTransporterAgent): | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_one_fcn = 'plain_resnet_lat' | |
stream_two_fcn = 'rn50_bert_lingunet_lat' | |
self.attention = TwoStreamAttentionLangFusionLat( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = TwoStreamTransportLangFusionLat( | |
stream_fcn=(stream_one_fcn, stream_two_fcn), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
class OriginalTransporterLangFusionAgent(TwoStreamClipLingUNetTransporterAgent): | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_fcn = 'plain_resnet_lang' | |
self.attention = OneStreamAttentionLangFusion( | |
stream_fcn=(stream_fcn, None), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = OneStreamTransportLangFusion( | |
stream_fcn=(stream_fcn, None), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
class ClipLingUNetTransporterAgent(TwoStreamClipLingUNetTransporterAgent): | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_fcn = 'clip_lingunet' | |
self.attention = OneStreamAttentionLangFusion( | |
stream_fcn=(stream_fcn, None), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = OneStreamTransportLangFusion( | |
stream_fcn=(stream_fcn, None), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) |