Spaces:
Runtime error
Runtime error
import numpy as np | |
from cliport.utils import utils | |
from cliport.agents.transporter import OriginalTransporterAgent | |
from cliport.models.core.attention import Attention | |
from cliport.models.core.attention_image_goal import AttentionImageGoal | |
from cliport.models.core.transport_image_goal import TransportImageGoal | |
class ImageGoalTransporterAgent(OriginalTransporterAgent): | |
def __init__(self, name, cfg, train_ds, test_ds): | |
super().__init__(name, cfg, train_ds, test_ds) | |
def _build_model(self): | |
stream_fcn = 'plain_resnet' | |
self.attention = AttentionImageGoal( | |
stream_fcn=(stream_fcn, None), | |
in_shape=self.in_shape, | |
n_rotations=1, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
self.transport = TransportImageGoal( | |
stream_fcn=(stream_fcn, None), | |
in_shape=self.in_shape, | |
n_rotations=self.n_rotations, | |
crop_size=self.crop_size, | |
preprocess=utils.preprocess, | |
cfg=self.cfg, | |
device=self.device_type, | |
) | |
def attn_forward(self, inp, softmax=True): | |
inp_img = inp['inp_img'] | |
goal_img = inp['goal_img'] | |
out = self.attention.forward(inp_img, goal_img, softmax=softmax) | |
return out | |
def attn_training_step(self, frame, goal, backprop=True, compute_err=False): | |
inp_img = frame['img'] | |
goal_img = goal['img'] | |
p0, p0_theta = frame['p0'], frame['p0_theta'] | |
inp = {'inp_img': inp_img, 'goal_img': goal_img} | |
out = self.attn_forward(inp, softmax=False) | |
return self.attn_criterion(backprop, compute_err, inp, out, p0, p0_theta) | |
def trans_forward(self, inp, softmax=True): | |
inp_img = inp['inp_img'] | |
goal_img = inp['goal_img'] | |
p0 = inp['p0'] | |
out = self.transport.forward(inp_img, goal_img, p0, softmax=softmax) | |
return out | |
def transport_training_step(self, frame, goal, backprop=True, compute_err=False): | |
inp_img = frame['img'] | |
goal_img = goal['img'] | |
p0 = frame['p0'] | |
p1, p1_theta = frame['p1'], frame['p1_theta'] | |
inp = {'inp_img': inp_img, 'goal_img': goal_img, 'p0': p0} | |
out = self.trans_forward(inp, softmax=False) | |
err, loss = self.transport_criterion(backprop, compute_err, inp, out, p0, p1, p1_theta) | |
return loss, err | |
def training_step(self, batch, batch_idx): | |
self.attention.train() | |
self.transport.train() | |
frame, goal = batch | |
# Get training losses. | |
step = self.total_steps + 1 | |
loss0, err0 = self.attn_training_step(frame, goal) | |
if isinstance(self.transport, Attention): | |
loss1, err1 = self.attn_training_step(frame, goal) | |
else: | |
loss1, err1 = self.transport_training_step(frame, goal) | |
total_loss = loss0 + loss1 | |
self.log('tr/attn/loss', loss0) | |
self.log('tr/trans/loss', loss1) | |
self.log('tr/loss', total_loss) | |
self.total_steps = step | |
self.trainer.train_loop.running_loss.append(total_loss) | |
self.check_save_iteration() | |
return dict( | |
loss=total_loss, | |
) | |
def validation_step(self, batch, batch_idx): | |
self.attention.eval() | |
self.transport.eval() | |
loss0, loss1 = 0, 0 | |
for i in range(self.val_repeats): | |
frame, goal = batch | |
l0, err0 = self.attn_training_step(frame, goal, backprop=False, compute_err=True) | |
loss0 += l0 | |
if isinstance(self.transport, Attention): | |
l1, err1 = self.attn_training_step(frame, goal, backprop=False, compute_err=True) | |
loss1 += l1 | |
else: | |
l1, err1 = self.transport_training_step(frame, goal, backprop=False, compute_err=True) | |
loss1 += l1 | |
loss0 /= self.val_repeats | |
loss1 /= self.val_repeats | |
val_total_loss = loss0 + loss1 | |
self.trainer.evaluation_loop.trainer.train_loop.running_loss.append(val_total_loss) | |
return dict( | |
val_loss=val_total_loss, | |
val_loss0=loss0, | |
val_loss1=loss1, | |
val_attn_dist_err=err0['dist'], | |
val_attn_theta_err=err0['theta'], | |
val_trans_dist_err=err1['dist'], | |
val_trans_theta_err=err1['theta'], | |
) | |
def act(self, obs, info=None, goal=None): # pylint: disable=unused-argument | |
"""Run inference and return best action given visual observations.""" | |
# Get heightmap from RGB-D images. | |
img = self.test_ds.get_image(obs) | |
goal_img = self.test_ds.get_image(goal[0]) | |
# Attention model forward pass. | |
pick_conf = self.attention.forward(img, goal_img) | |
pick_conf = pick_conf.detach().cpu().numpy() | |
argmax = np.argmax(pick_conf) | |
argmax = np.unravel_index(argmax, shape=pick_conf.shape) | |
p0_pix = argmax[:2] | |
p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2]) | |
# Transport model forward pass. | |
place_conf = self.transport.forward(img, goal_img, p0_pix) | |
place_conf = place_conf.permute(1, 2, 0) | |
place_conf = place_conf.detach().cpu().numpy() | |
argmax = np.argmax(place_conf) | |
argmax = np.unravel_index(argmax, shape=place_conf.shape) | |
p1_pix = argmax[:2] | |
p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2]) | |
# Pixels to end effector poses. | |
hmap = img[:, :, 3] | |
p0_xyz = utils.pix_to_xyz(p0_pix, hmap, self.bounds, self.pix_size) | |
p1_xyz = utils.pix_to_xyz(p1_pix, hmap, self.bounds, self.pix_size) | |
p0_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p0_theta)) | |
p1_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p1_theta)) | |
return { | |
'pose0': (np.asarray(p0_xyz), np.asarray(p0_xyzw)), | |
'pose1': (np.asarray(p1_xyz), np.asarray(p1_xyzw)), | |
'pick': p0_pix, | |
'place': p1_pix, | |
} | |