Spaces:
Runtime error
Runtime error
File size: 8,739 Bytes
8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e 114ef2f 8fc2b4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import numpy as np
import os
import IPython
from cliport import tasks
from cliport.dataset import RavensDataset
from cliport.environments.environment import Environment
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import TerminalFormatter
import time
import random
import json
import traceback
from gensim.utils import (
mkdir_if_missing,
save_text,
save_stat,
compute_diversity_score_from_assets,
add_to_txt
)
import pybullet as p
class SimulationRunner:
""" the main class that runs simulation loop """
def __init__(self, cfg, agent, critic, memory):
self.cfg = cfg
self.agent = agent
self.critic = critic
self.memory = memory
# statistics
self.syntax_pass_rate = 0
self.runtime_pass_rate = 0
self.env_pass_rate = 0
self.curr_trials = 0
self.prompt_folder = f"prompts/{cfg['prompt_folder']}"
self.chat_log = memory.chat_log
self.task_asset_logs = []
# All the generated tasks in this run.
# Different from the ones in online buffer that can load from offline.
self.generated_task_assets = []
self.generated_task_programs = []
self.generated_task_names = []
self.generated_tasks = []
self.passed_tasks = [] # accepted ones
self.video_path = None
self._md_logger = ''
def print_current_stats(self):
""" print the current statistics of the simulation design """
print("=========================================================")
print(
f"{self.cfg['prompt_folder']} Trial {self.curr_trials} SYNTAX_PASS_RATE: {(self.syntax_pass_rate / (self.curr_trials)) * 100:.1f}% RUNTIME_PASS_RATE: {(self.runtime_pass_rate / (self.curr_trials)) * 100:.1f}% ENV_PASS_RATE: {(self.env_pass_rate / (self.curr_trials)) * 100:.1f}%")
print("=========================================================")
def save_stats(self):
""" save the final simulation statistics """
self.diversity_score = compute_diversity_score_from_assets(self.task_asset_logs, self.curr_trials)
save_stat(self.cfg, self.cfg['model_output_dir'], self.generated_tasks,
self.syntax_pass_rate / (self.curr_trials),
self.runtime_pass_rate / (self.curr_trials), self.env_pass_rate / (self.curr_trials),
self.diversity_score)
print("Model Folder: ", self.cfg['model_output_dir'])
print(f"Total {len(self.generated_tasks)} New Tasks:", [task['task-name'] for task in self.generated_tasks])
try:
print(f"Added {len(self.passed_tasks)} Tasks:", self.passed_tasks)
except:
pass
def task_creation(self):
""" create the task through interactions of agent and critic """
self.task_creation_pass = True
mkdir_if_missing(self.cfg['model_output_dir'])
try:
start_time = time.time()
self.generated_task = self.agent.propose_task(self.generated_task_names)
self.generated_asset = self.agent.propose_assets()
self.agent.api_review()
self.critic.error_review(self.generated_task)
self.generated_code, self.curr_task_name = self.agent.implement_task()
self.task_asset_logs.append(self.generated_task["assets-used"])
self.generated_task_name = self.generated_task["task-name"]
self.generated_tasks.append(self.generated_task)
self.generated_task_assets.append(self.generated_asset)
self.generated_task_programs.append(self.generated_code)
self.generated_task_names.append(self.generated_task_name)
except:
to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
print("Task Creation Exception:", to_print)
self.task_creation_pass = False
# self.curr_task_name = self.generated_task['task-name']
print("task creation time {:.3f}".format(time.time() - start_time))
def setup_env(self):
""" build the new task"""
env = Environment(
self.cfg['assets_root'],
disp=self.cfg['disp'],
shared_memory=self.cfg['shared_memory'],
hz=480,
record_cfg=self.cfg['record']
)
task = eval(self.curr_task_name)()
task.mode = self.cfg['mode']
record = self.cfg['record']['save_video']
save_data = self.cfg['save_data']
# Initialize scripted oracle agent and dataset.
expert = task.oracle(env)
self.cfg['task'] = self.generated_task["task-name"]
data_path = os.path.join(self.cfg['data_dir'], "{}-{}".format(self.generated_task["task-name"], task.mode))
dataset = RavensDataset(data_path, self.cfg, n_demos=0, augment=False)
print(f"Saving to: {data_path}")
print(f"Mode: {task.mode}")
# Start video recording
# if record:
# env.start_rec(f'{dataset.n_episodes+1:06d}')
return task, dataset, env, expert
def run_one_episode(self, dataset, expert, env, task, episode, seed):
""" run the new task for one episode """
add_to_txt(
self.chat_log, f"================= TRIAL: {self.curr_trials}", with_print=True)
record = self.cfg['record']['save_video']
np.random.seed(seed)
random.seed(seed)
print('Oracle demo: {}/{} | Seed: {}'.format(dataset.n_episodes + 1, self.cfg['n'], seed))
env.set_task(task)
obs = env.reset()
info = env.info
reward = 0
total_reward = 0
save_data = self.cfg['save_data']
# Start recording video (NOTE: super slow)
if record:
video_name = f'{dataset.n_episodes + 1:06d}'
env.start_rec(video_name)
# Rollout expert policy
for _ in range(task.max_steps):
act = expert.act(obs, info)
episode.append((obs, act, reward, info))
lang_goal = info['lang_goal']
obs, reward, done, info = env.step(act)
total_reward += reward
print(f'Total Reward: {total_reward:.3f} | Done: {done} | Goal: {lang_goal}')
if done:
break
# End recording video
if record:
env.end_rec()
self.video_path = os.path.join(self.cfg['record']['save_video_path'],
f"{video_name}.mp4")
episode.append((obs, None, reward, info))
return total_reward
def simulate_task(self):
""" simulate the created task and save demonstrations """
total_cnt = 0.
reset_success_cnt = 0.
env_success_cnt = 0.
seed = 123
self.curr_trials += 1
if p.isConnected():
p.disconnect()
if not self.task_creation_pass:
print("task creation failure => count as syntax exceptions.")
return
# Check syntax and compilation-time error
try:
exec(self.generated_code, globals())
task, dataset, env, expert = self.setup_env()
self.env = env
self.syntax_pass_rate += 1
except:
to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
save_text(self.cfg['model_output_dir'], self.generated_task_name + '_error', str(traceback.format_exc()))
print("========================================================")
print("Syntax Exception:", to_print)
self._md_logger = str(traceback.format_exc())
return
try:
# Collect environment and collect data from oracle demonstrations.
while total_cnt <= self.cfg['max_env_run_cnt']:
total_cnt += 1
# Set seeds.
episode = []
total_reward = self.run_one_episode(dataset, expert, env, task, episode, seed)
reset_success_cnt += 1
env_success_cnt += total_reward > 0.99
self.runtime_pass_rate += 1
print("Runtime Test Pass!")
except:
to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
save_text(self.cfg['model_output_dir'], self.generated_task_name + '_error', str(traceback.format_exc()))
print("========================================================")
print("Runtime Exception:", to_print)
self._md_logger = str(traceback.format_exc())
self.memory.save_run(self.generated_task)
|