File size: 8,739 Bytes
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114ef2f
8fc2b4e
 
114ef2f
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114ef2f
 
 
 
8fc2b4e
 
 
 
114ef2f
 
8fc2b4e
 
 
 
 
114ef2f
 
 
 
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114ef2f
 
 
 
 
 
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114ef2f
 
8fc2b4e
 
 
 
 
 
114ef2f
8fc2b4e
 
 
 
 
 
 
 
 
 
 
114ef2f
 
 
 
 
 
8fc2b4e
 
 
 
 
 
 
 
 
 
 
114ef2f
 
 
 
 
 
8fc2b4e
 
 
 
 
 
 
 
 
 
114ef2f
8fc2b4e
 
114ef2f
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114ef2f
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114ef2f
 
8fc2b4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import os
import IPython
from cliport import tasks
from cliport.dataset import RavensDataset
from cliport.environments.environment import Environment

from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import TerminalFormatter

import time
import random
import json
import traceback
from gensim.utils import (
    mkdir_if_missing,
    save_text,
    save_stat,
    compute_diversity_score_from_assets,
    add_to_txt
)
import pybullet as p


class SimulationRunner:
    """ the main class that runs simulation loop """

    def __init__(self, cfg, agent, critic, memory):
        self.cfg = cfg
        self.agent = agent
        self.critic = critic
        self.memory = memory

        # statistics
        self.syntax_pass_rate = 0
        self.runtime_pass_rate = 0
        self.env_pass_rate = 0
        self.curr_trials = 0

        self.prompt_folder = f"prompts/{cfg['prompt_folder']}"
        self.chat_log = memory.chat_log
        self.task_asset_logs = []

        # All the generated tasks in this run.
        # Different from the ones in online buffer that can load from offline.
        self.generated_task_assets = []
        self.generated_task_programs = []
        self.generated_task_names = []
        self.generated_tasks = []
        self.passed_tasks = []  # accepted ones

        self.video_path = None
        self._md_logger = ''

    def print_current_stats(self):
        """ print the current statistics of the simulation design """
        print("=========================================================")
        print(
            f"{self.cfg['prompt_folder']} Trial {self.curr_trials} SYNTAX_PASS_RATE: {(self.syntax_pass_rate / (self.curr_trials)) * 100:.1f}% RUNTIME_PASS_RATE: {(self.runtime_pass_rate / (self.curr_trials)) * 100:.1f}% ENV_PASS_RATE: {(self.env_pass_rate / (self.curr_trials)) * 100:.1f}%")
        print("=========================================================")

    def save_stats(self):
        """ save the final simulation statistics """
        self.diversity_score = compute_diversity_score_from_assets(self.task_asset_logs, self.curr_trials)
        save_stat(self.cfg, self.cfg['model_output_dir'], self.generated_tasks,
                  self.syntax_pass_rate / (self.curr_trials),
                  self.runtime_pass_rate / (self.curr_trials), self.env_pass_rate / (self.curr_trials),
                  self.diversity_score)
        print("Model Folder: ", self.cfg['model_output_dir'])
        print(f"Total {len(self.generated_tasks)} New Tasks:", [task['task-name'] for task in self.generated_tasks])
        try:
            print(f"Added {len(self.passed_tasks)}  Tasks:", self.passed_tasks)
        except:
            pass

    def task_creation(self):
        """ create the task through interactions of agent and critic """
        self.task_creation_pass = True
        mkdir_if_missing(self.cfg['model_output_dir'])

        try:
            start_time = time.time()
            self.generated_task = self.agent.propose_task(self.generated_task_names)
            self.generated_asset = self.agent.propose_assets()
            self.agent.api_review()
            self.critic.error_review(self.generated_task)
            self.generated_code, self.curr_task_name = self.agent.implement_task()
            self.task_asset_logs.append(self.generated_task["assets-used"])
            self.generated_task_name = self.generated_task["task-name"]
            self.generated_tasks.append(self.generated_task)
            self.generated_task_assets.append(self.generated_asset)
            self.generated_task_programs.append(self.generated_code)
            self.generated_task_names.append(self.generated_task_name)
        except:
            to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
            print("Task Creation Exception:", to_print)
            self.task_creation_pass = False

        # self.curr_task_name = self.generated_task['task-name']
        print("task creation time {:.3f}".format(time.time() - start_time))

    def setup_env(self):
        """ build the new task"""
        env = Environment(
            self.cfg['assets_root'],
            disp=self.cfg['disp'],
            shared_memory=self.cfg['shared_memory'],
            hz=480,
            record_cfg=self.cfg['record']
        )

        task = eval(self.curr_task_name)()
        task.mode = self.cfg['mode']
        record = self.cfg['record']['save_video']
        save_data = self.cfg['save_data']

        # Initialize scripted oracle agent and dataset.
        expert = task.oracle(env)
        self.cfg['task'] = self.generated_task["task-name"]
        data_path = os.path.join(self.cfg['data_dir'], "{}-{}".format(self.generated_task["task-name"], task.mode))
        dataset = RavensDataset(data_path, self.cfg, n_demos=0, augment=False)
        print(f"Saving to: {data_path}")
        print(f"Mode: {task.mode}")

        # Start video recording
        # if record:
        #     env.start_rec(f'{dataset.n_episodes+1:06d}')

        return task, dataset, env, expert

    def run_one_episode(self, dataset, expert, env, task, episode, seed):
        """ run the new task for one episode """
        add_to_txt(
            self.chat_log, f"================= TRIAL: {self.curr_trials}", with_print=True)
        record = self.cfg['record']['save_video']
        np.random.seed(seed)
        random.seed(seed)
        print('Oracle demo: {}/{} | Seed: {}'.format(dataset.n_episodes + 1, self.cfg['n'], seed))
        env.set_task(task)
        obs = env.reset()

        info = env.info
        reward = 0
        total_reward = 0

        save_data = self.cfg['save_data']
        # Start recording video (NOTE: super slow)
        if record:
            video_name = f'{dataset.n_episodes + 1:06d}'
            env.start_rec(video_name)

        # Rollout expert policy
        for _ in range(task.max_steps):
            act = expert.act(obs, info)
            episode.append((obs, act, reward, info))
            lang_goal = info['lang_goal']
            obs, reward, done, info = env.step(act)
            total_reward += reward
            print(f'Total Reward: {total_reward:.3f} | Done: {done} | Goal: {lang_goal}')
            if done:
                break

        # End recording video
        if record:
            env.end_rec()
            self.video_path = os.path.join(self.cfg['record']['save_video_path'],
                                           f"{video_name}.mp4")

        episode.append((obs, None, reward, info))
        return total_reward

    def simulate_task(self):
        """ simulate the created task and save demonstrations """
        total_cnt = 0.
        reset_success_cnt = 0.
        env_success_cnt = 0.
        seed = 123
        self.curr_trials += 1

        if p.isConnected():
            p.disconnect()

        if not self.task_creation_pass:
            print("task creation failure => count as syntax exceptions.")
            return

        # Check syntax and compilation-time error
        try:
            exec(self.generated_code, globals())
            task, dataset, env, expert = self.setup_env()
            self.env = env
            self.syntax_pass_rate += 1

        except:
            to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
            save_text(self.cfg['model_output_dir'], self.generated_task_name + '_error', str(traceback.format_exc()))
            print("========================================================")
            print("Syntax Exception:", to_print)
            self._md_logger = str(traceback.format_exc())
            return

        try:
            # Collect environment and collect data from oracle demonstrations.
            while total_cnt <= self.cfg['max_env_run_cnt']:
                total_cnt += 1
                # Set seeds.
                episode = []
                total_reward = self.run_one_episode(dataset, expert, env, task, episode, seed)

                reset_success_cnt += 1
                env_success_cnt += total_reward > 0.99

            self.runtime_pass_rate += 1
            print("Runtime Test Pass!")


        except:
            to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
            save_text(self.cfg['model_output_dir'], self.generated_task_name + '_error', str(traceback.format_exc()))
            print("========================================================")
            print("Runtime Exception:", to_print)
            self._md_logger = str(traceback.format_exc())

        self.memory.save_run(self.generated_task)