File size: 5,923 Bytes
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import torch.nn as nn
import torch.nn.functional as F

import cliport.utils.utils as utils

from cliport.models.resnet import ConvBlock, IdentityBlock
from torchvision.models import resnet18, resnet34, resnet50

class PretrainedResNet18(nn.Module):
    def __init__(self, input_shape, output_dim, cfg, device, preprocess):
        super(PretrainedResNet18, self).__init__()
        self.input_shape = input_shape
        self.input_dim = input_shape[-1]
        self.output_dim = output_dim
        self.cfg = cfg
        self.device = device
        self.batchnorm = self.cfg['train']['batchnorm']
        self.preprocess = preprocess
        self.pretrained_model = resnet18(pretrained=True)
        self.pretrained_model.avgpool = nn.Identity()
        self.pretrained_model.fc = nn.Identity()
        # self.pretrained_model.eval()
        self.pretrained_model.conv1 = nn.Conv2d(self.input_dim, 64, kernel_size=2, stride=1, padding=3, bias=False)
        # import IPython; IPython.embed()
        for param in self.pretrained_model.parameters():
            param.requires_grad = False
        self.pretrained_model.conv1.weight.requires_grad = True

        self._make_layers()

    def _make_layers(self):
        # conv1
        # self.conv1 = nn.Sequential(
        #     nn.Conv2d(self.input_dim, 64, stride=1, kernel_size=3, padding=1),
        #     nn.BatchNorm2d(64) if self.batchnorm else nn.Identity(),
        #     nn.ReLU(True),
        # )

        # # fcn
        # self.layer1 = nn.Sequential(
        #     ConvBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        #     IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        # )

        # self.layer2 = nn.Sequential(
        #     ConvBlock(64, [128, 128, 128], kernel_size=3, stride=2, batchnorm=self.batchnorm),
        #     IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        # )

        # self.layer3 = nn.Sequential(
        #     ConvBlock(128, [256, 256, 256], kernel_size=3, stride=2, batchnorm=self.batchnorm),
        #     IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        # )

        # self.layer4 = nn.Sequential(
        #     ConvBlock(256, [512, 512, 512], kernel_size=3, stride=2, batchnorm=self.batchnorm),
        #     IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        # )

        # self.layer5 = nn.Sequential(
        #     ConvBlock(512, [1024, 1024, 1024], kernel_size=3, stride=2, batchnorm=self.batchnorm),
        #     IdentityBlock(1024, [1024, 1024, 1024], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        # )

        # # head
        # self.layer6 = nn.Sequential(
        #     ConvBlock(1024, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        #     IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        #     nn.UpsamplingBilinear2d(scale_factor=2),
        # )

        self.layer7 = nn.Sequential(
            ConvBlock(512, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        self.layer8 = nn.Sequential(
            ConvBlock(256, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        self.layer9 = nn.Sequential(
            ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        self.layer10 = nn.Sequential(
            ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        # conv2
        self.conv2 = nn.Sequential(
            ConvBlock(128, [16, 16, self.output_dim], kernel_size=3, stride=1,
                      final_relu=False, batchnorm=self.batchnorm),
            IdentityBlock(self.output_dim, [16, 16, self.output_dim], kernel_size=3, stride=1,
                          final_relu=False, batchnorm=self.batchnorm)
        )

    def forward(self, x):
        x = self.preprocess(x, dist='transporter')
        in_shape = x.shape

        # # encoder
        # for layer in [self.conv1, self.layer1, self.layer2, self.layer3, self.layer4, self.layer5]:
        #     x = layer(x)

        # # decoder
        # im = []
        # for layer in [self.layer6, self.layer7, self.layer8, self.layer9, self.layer10, self.conv2]:
        #     im.append(x)
        #     x = layer(x)

        # encoder
        # for layer in [self.conv1, self.layer1, self.layer2, self.layer3, self.layer4]:
        #     x = layer(x)
        # x = x[:, :3, :, :]
        x = self.pretrained_model.conv1(x)
        for name, module in self.pretrained_model._modules.items():
            if name == 'conv1':
                continue
            x = module(x)
            if name == 'layer4':
                break
        # with torch.no_grad():
        #     x = self.pretrained_model(x)
        # import ipdb;ipdb.set_trace()

        
        x = F.interpolate(x, size=(8, 8), mode='bilinear')

        # decoder
        im = []
        for layer in [self.layer7, self.layer8, self.conv2]:
            im.append(x)
            x = layer(x)
        
        x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear')
        return x, im