File size: 24,863 Bytes
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
"""Environment class."""

import os
import tempfile
import time
import cv2
import imageio

import gym
import numpy as np
from cliport.tasks import cameras
from cliport.utils import pybullet_utils
from cliport.utils import utils
import string
import pybullet as p
import tempfile
import random
import sys

PLACE_STEP = 0.0003
PLACE_DELTA_THRESHOLD = 0.005

UR5_URDF_PATH = 'ur5/ur5.urdf'
UR5_WORKSPACE_URDF_PATH = 'ur5/workspace.urdf'
PLANE_URDF_PATH = 'plane/plane.urdf'


class Environment(gym.Env):
    """OpenAI Gym-style environment class."""

    def __init__(self,
                 assets_root,
                 task=None,
                 disp=False,
                 shared_memory=False,
                 hz=240,
                 record_cfg=None):
        """Creates OpenAI Gym-style environment with PyBullet.

        Args:
          assets_root: root directory of assets.
          task: the task to use. If None, the user must call set_task for the
            environment to work properly.
          disp: show environment with PyBullet's built-in display viewer.
          shared_memory: run with shared memory.
          hz: PyBullet physics simulation step speed. Set to 480 for deformables.

        Raises:
          RuntimeError: if pybullet cannot load fileIOPlugin.
        """
        self.pix_size = 0.003125
        self.obj_ids = {'fixed': [], 'rigid': [], 'deformable': []}
        self.objects = self.obj_ids # make a copy

        self.homej = np.array([-1, -0.5, 0.5, -0.5, -0.5, 0]) * np.pi
        self.agent_cams = cameras.RealSenseD415.CONFIG
        self.record_cfg = record_cfg
        self.save_video = False
        self.step_counter = 0

        self.assets_root = assets_root

        color_tuple = [
            gym.spaces.Box(0, 255, config['image_size'] + (3,), dtype=np.uint8)
            for config in self.agent_cams
        ]
        depth_tuple = [
            gym.spaces.Box(0.0, 20.0, config['image_size'], dtype=np.float32)
            for config in self.agent_cams
        ]
        self.observation_space = gym.spaces.Dict({
            'color': gym.spaces.Tuple(color_tuple),
            'depth': gym.spaces.Tuple(depth_tuple),
        })
        self.position_bounds = gym.spaces.Box(
            low=np.array([0.25, -0.5, 0.], dtype=np.float32),
            high=np.array([0.75, 0.5, 0.28], dtype=np.float32),
            shape=(3,),
            dtype=np.float32)
        self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.3]])

        self.action_space = gym.spaces.Dict({
            'pose0':
                gym.spaces.Tuple(
                    (self.position_bounds,
                     gym.spaces.Box(-1.0, 1.0, shape=(4,), dtype=np.float32))),
            'pose1':
                gym.spaces.Tuple(
                    (self.position_bounds,
                     gym.spaces.Box(-1.0, 1.0, shape=(4,), dtype=np.float32)))
        })

        # Start PyBullet.
        disp_option = p.DIRECT
        if disp:
            disp_option = p.GUI
            if shared_memory:
                disp_option = p.SHARED_MEMORY
        client = p.connect(disp_option)
        file_io = p.loadPlugin('fileIOPlugin', physicsClientId=client)
        if file_io < 0:
            raise RuntimeError('pybullet: cannot load FileIO!')
        if file_io >= 0:
            p.executePluginCommand(
                file_io,
                textArgument=assets_root,
                intArgs=[p.AddFileIOAction],
                physicsClientId=client)

        p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0)
        p.setPhysicsEngineParameter(enableFileCaching=0)
        p.setAdditionalSearchPath(assets_root)
        p.setAdditionalSearchPath(tempfile.gettempdir())
        p.setTimeStep(1. / hz)

        # If using --disp, move default camera closer to the scene.
        if disp:
            target = p.getDebugVisualizerCamera()[11]
            p.resetDebugVisualizerCamera(
                cameraDistance=1.1,
                cameraYaw=90,
                cameraPitch=-25,
                cameraTargetPosition=target)

        if task:
            self.set_task(task)

    def __del__(self):
        if hasattr(self, 'video_writer'):
            self.curr_video = []
            self.video_writer.close()

    @property
    def is_static(self):
        """Return true if objects are no longer moving."""
        v = [np.linalg.norm(p.getBaseVelocity(i)[0])
             for i in self.obj_ids['rigid']]
        return all(np.array(v) < 5e-3)

    def fill_dummy_template(self, template):
        """check if there are empty templates that haven't been fulfilled yet. if so. fill in dummy numbers """
        full_template_path = os.path.join(self.assets_root, template)
        with open(full_template_path, 'r') as file:
            fdata = file.read()

        fill = False
        for field in ['DIMH', 'DIMR', 'DIMX', 'DIMY', 'DIMZ', 'DIM']:
            # usually 3 should be enough
            if field in fdata:
                default_replace_vals = np.random.uniform(0.03, 0.05, size=(3,)).tolist() # [0.03,0.03,0.03]
                for i in range(len(default_replace_vals)):
                    fdata = fdata.replace(f'{field}{i}', str(default_replace_vals[i]))
                fill = True

        for field in ['HALF']:
            # usually 3 should be enough
            if field in fdata:
                default_replace_vals = np.random.uniform(0.01, 0.03, size=(3,)).tolist() # [0.015,0.015,0.015]
                for i in range(len(default_replace_vals)):
                    fdata = fdata.replace(f'{field}{i}', str(default_replace_vals[i]))
                fill = True

        if fill:
            alphabet = string.ascii_lowercase + string.digits
            rname = ''.join(random.choices(alphabet, k=16))
            tmpdir = tempfile.gettempdir()
            template_filename = os.path.split(template)[-1]
            fname = os.path.join(tmpdir, f'{template_filename}.{rname}')
            with open(fname, 'w') as file:
                file.write(fdata)
            # print("fill-in dummys")

            return fname
        else:
            return template

    def add_object(self, urdf, pose, category='rigid', color=None, **kwargs):
        """List of (fixed, rigid, or deformable) objects in env."""
        fixed_base = 1 if category == 'fixed' else 0

        if 'template' in urdf:
            if not os.path.exists(os.path.join(self.assets_root, urdf)):
                urdf = urdf.replace("-template", "")

            urdf = self.fill_dummy_template(urdf)

        if not os.path.exists(os.path.join(self.assets_root, urdf)):
          print(f"missing urdf error: {os.path.join(self.assets_root, urdf)}. use dummy block.")
          urdf = 'stacking/block.urdf'

        obj_id = pybullet_utils.load_urdf(
            p,
            os.path.join(self.assets_root, urdf),
            pose[0],
            pose[1],
            useFixedBase=fixed_base)

        if not obj_id is None:
            self.obj_ids[category].append(obj_id)

        if color is not None:
            if type(color) is str:
                color = utils.COLORS[color]
            color = color + [1.]
            p.changeVisualShape(obj_id, -1, rgbaColor=color)

        if  hasattr(self, 'record_cfg') and 'blender_render' in self.record_cfg and self.record_cfg['blender_render']:
            # print("urdf:", os.path.join(self.assets_root, urdf))
            self.blender_recorder.register_object(obj_id, os.path.join(self.assets_root, urdf), color=color)

        return obj_id

    def set_color(self, obj_id, color):
        p.changeVisualShape(obj_id, -1, rgbaColor=color + [1])

    def set_object_color(self, *args, **kwargs):
        return self.set_color(*args, **kwargs)

    # ---------------------------------------------------------------------------
    # Standard Gym Functions
    # ---------------------------------------------------------------------------

    def seed(self, seed=None):
        self._random = np.random.RandomState(seed)
        return seed

    def reset(self):
        """Performs common reset functionality for all supported tasks."""
        if not self.task:
            raise ValueError('environment task must be set. Call set_task or pass '
                             'the task arg in the environment constructor.')
        self.obj_ids = {'fixed': [], 'rigid': [], 'deformable': []}
        p.resetSimulation(p.RESET_USE_DEFORMABLE_WORLD)
        p.setGravity(0, 0, -9.8)

        # Temporarily disable rendering to load scene faster.
        p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 0)

        plane = pybullet_utils.load_urdf(p, os.path.join(self.assets_root, PLANE_URDF_PATH),
                                 [0, 0, -0.001])
        workspace = pybullet_utils.load_urdf(
            p, os.path.join(self.assets_root, UR5_WORKSPACE_URDF_PATH), [0.5, 0, 0])

        # Load UR5 robot arm equipped with suction end effector.
        # TODO(andyzeng): add back parallel-jaw grippers.
        self.ur5 = pybullet_utils.load_urdf(
            p, os.path.join(self.assets_root, UR5_URDF_PATH))
        self.ee = self.task.ee(self.assets_root, self.ur5, 9, self.obj_ids)
        self.ee_tip = 10  # Link ID of suction cup.

        if  hasattr(self, 'record_cfg') and 'blender_render' in self.record_cfg and self.record_cfg['blender_render']:
            from misc.pyBulletSimRecorder import PyBulletRecorder
            self.blender_recorder = PyBulletRecorder()

            self.blender_recorder.register_object(plane, os.path.join(self.assets_root, PLANE_URDF_PATH))
            self.blender_recorder.register_object(workspace, os.path.join(self.assets_root, UR5_WORKSPACE_URDF_PATH))
            self.blender_recorder.register_object(self.ur5, os.path.join(self.assets_root, UR5_URDF_PATH))

            self.blender_recorder.register_object(self.ee.base,  self.ee.base_urdf_path)
            if hasattr(self.ee, 'body'):
                self.blender_recorder.register_object(self.ee.body,  self.ee.urdf_path)


        # Get revolute joint indices of robot (skip fixed joints).
        n_joints = p.getNumJoints(self.ur5)
        joints = [p.getJointInfo(self.ur5, i) for i in range(n_joints)]
        self.joints = [j[0] for j in joints if j[2] == p.JOINT_REVOLUTE]

        # Move robot to home joint configuration.
        for i in range(len(self.joints)):
            p.resetJointState(self.ur5, self.joints[i], self.homej[i])

        # Reset end effector.
        self.ee.release()

        # Reset task.
        self.task.reset(self)

        # Re-enable rendering.
        p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 1)

        obs, _, _, _ = self.step()
        return obs

    def step(self, action=None):
        """Execute action with specified primitive.

        Args:
          action: action to execute.

        Returns:
          (obs, reward, done, info) tuple containing MDP step data.
        """
        if action is not None:
            timeout = self.task.primitive(self.movej, self.movep, self.ee, action['pose0'], action['pose1'])

            # Exit early if action times out. We still return an observation
            # so that we don't break the Gym API contract.
            if timeout:
                obs = {'color': (), 'depth': ()}
                for config in self.agent_cams:
                    color, depth, _ = self.render_camera(config)
                    obs['color'] += (color,)
                    obs['depth'] += (depth,)
                return obs, 0.0, True, self.info

        start_time = time.time()
        # Step simulator asynchronously until objects settle.
        while not self.is_static:
            self.step_simulation()
            if time.time() - start_time > 5: # timeout
                break

        # Get task rewards.
        reward, info = self.task.reward() if action is not None else (0, {})
        done = self.task.done()

        # Add ground truth robot state into info.
        info.update(self.info)

        obs = self._get_obs()

        return obs, reward, done, info

    def step_simulation(self):
        p.stepSimulation()
        self.step_counter += 1

        if self.save_video and self.step_counter % 5 == 0:
            self.add_video_frame()

    def render(self, mode='rgb_array'):
        # Render only the color image from the first camera.
        # Only support rgb_array for now.
        if mode != 'rgb_array':
            raise NotImplementedError('Only rgb_array implemented')
        color, _, _ = self.render_camera(self.agent_cams[0])
        return color

    def render_camera(self, config, image_size=None, shadow=1):
        """Render RGB-D image with specified camera configuration."""
        if not image_size:
            image_size = config['image_size']

        # OpenGL camera settings.
        lookdir = np.float32([0, 0, 1]).reshape(3, 1)
        updir = np.float32([0, -1, 0]).reshape(3, 1)
        rotation = p.getMatrixFromQuaternion(config['rotation'])
        rotm = np.float32(rotation).reshape(3, 3)
        lookdir = (rotm @ lookdir).reshape(-1)
        updir = (rotm @ updir).reshape(-1)
        lookat = config['position'] + lookdir
        focal_len = config['intrinsics'][0]
        znear, zfar = config['zrange']
        viewm = p.computeViewMatrix(config['position'], lookat, updir)
        fovh = (image_size[0] / 2) / focal_len
        fovh = 180 * np.arctan(fovh) * 2 / np.pi

        # Notes: 1) FOV is vertical FOV 2) aspect must be float
        aspect_ratio = image_size[1] / image_size[0]
        projm = p.computeProjectionMatrixFOV(fovh, aspect_ratio, znear, zfar)

        # Render with OpenGL camera settings.
        _, _, color, depth, segm = p.getCameraImage(
            width=image_size[1],
            height=image_size[0],
            viewMatrix=viewm,
            projectionMatrix=projm,
            shadow=shadow,
            flags=p.ER_SEGMENTATION_MASK_OBJECT_AND_LINKINDEX,
            renderer=p.ER_BULLET_HARDWARE_OPENGL)

        # Get color image.
        color_image_size = (image_size[0], image_size[1], 4)
        color = np.array(color, dtype=np.uint8).reshape(color_image_size)
        color = color[:, :, :3]  # remove alpha channel
        if config['noise']:
            color = np.int32(color)
            color += np.int32(self._random.normal(0, 3, image_size))
            color = np.uint8(np.clip(color, 0, 255))

        # Get depth image.
        depth_image_size = (image_size[0], image_size[1])
        zbuffer = np.array(depth).reshape(depth_image_size)
        depth = (zfar + znear - (2. * zbuffer - 1.) * (zfar - znear))
        depth = (2. * znear * zfar) / depth
        if config['noise']:
            depth += self._random.normal(0, 0.003, depth_image_size)

        # Get segmentation image.
        segm = np.uint8(segm).reshape(depth_image_size)

        return color, depth, segm

    @property
    def info(self):
        """Environment info variable with object poses, dimensions, and colors."""

        # Some tasks create and remove zones, so ignore those IDs.
        # removed_ids = []
        # if (isinstance(self.task, tasks.names['cloth-flat-notarget']) or
        #         isinstance(self.task, tasks.names['bag-alone-open'])):
        #   removed_ids.append(self.task.zone_id)

        info = {}  # object id : (position, rotation, dimensions)
        for obj_ids in self.obj_ids.values():
            for obj_id in obj_ids:
                pos, rot = p.getBasePositionAndOrientation(obj_id)
                dim = p.getVisualShapeData(obj_id)[0][3]
                info[obj_id] = (pos, rot, dim)

        info['lang_goal'] = self.get_lang_goal()
        return info

    def set_task(self, task):
        task.set_assets_root(self.assets_root)
        self.task = task

    def get_task_name(self):
        return type(self.task).__name__

    def get_lang_goal(self):
        if self.task:
            return self.task.get_lang_goal()
        else:
            raise Exception("No task for was set")

    # ---------------------------------------------------------------------------
    # Robot Movement Functions
    # ---------------------------------------------------------------------------

    def movej(self, targj, speed=0.01, timeout=5):
        """Move UR5 to target joint configuration."""
        if self.save_video:
            timeout = timeout * 5 # 50?

        t0 = time.time()
        while (time.time() - t0) < timeout:
            currj = [p.getJointState(self.ur5, i)[0] for i in self.joints]
            currj = np.array(currj)
            diffj = targj - currj
            if all(np.abs(diffj) < 1e-2):
                return False

            # Move with constant velocity
            norm = np.linalg.norm(diffj)
            v = diffj / norm if norm > 0 else 0
            stepj = currj + v * speed
            gains = np.ones(len(self.joints))
            p.setJointMotorControlArray(
                bodyIndex=self.ur5,
                jointIndices=self.joints,
                controlMode=p.POSITION_CONTROL,
                targetPositions=stepj,
                positionGains=gains)
            self.step_counter += 1
            self.step_simulation()

        print(f'Warning: movej exceeded {timeout} second timeout. Skipping.')
        return True

    def start_rec(self, video_filename):
        assert self.record_cfg

        # make video directory
        if not os.path.exists(self.record_cfg['save_video_path']):
            os.makedirs(self.record_cfg['save_video_path'])

        # close and save existing writer
        if hasattr(self, 'video_writer'):

            self.video_writer.close()

        self.curr_video = []

        # initialize writer
        self.video_writer = imageio.get_writer(os.path.join(self.record_cfg['save_video_path'],
                                                            f"{video_filename}.mp4"),
                                               fps=self.record_cfg['fps'],
                                               format='FFMPEG',
                                               codec='h264',)
        p.setRealTimeSimulation(False)
        self.save_video = True

    def end_rec(self):
        if hasattr(self, 'video_writer'):
            self.video_writer.close()

        p.setRealTimeSimulation(True)
        self.save_video = False

    def add_video_frame(self):
        # Render frame.
        config = self.agent_cams[0]
        image_size = (self.record_cfg['video_height'], self.record_cfg['video_width'])
        color, depth, _ = self.render_camera(config, image_size, shadow=0)
        color = np.array(color)

        if hasattr(self.record_cfg, 'blender_render') and  self.record_cfg['blender_render']:
            # print("add blender key frame")
            self.blender_recorder.add_keyframe()

        # Add language instruction to video.
        if self.record_cfg['add_text']:
            lang_goal = self.get_lang_goal()
            reward = f"Success: {self.task.get_reward():.3f}"

            font = cv2.FONT_HERSHEY_DUPLEX
            font_scale = 0.65
            font_thickness =  1

            # Write language goal.
            line_length = 60
            for i in range(len(lang_goal) // line_length + 1):
                lang_textsize = cv2.getTextSize(lang_goal[i*line_length:(i+1)*line_length], font, font_scale, font_thickness)[0]
                lang_textX = (image_size[1] - lang_textsize[0]) // 2
                color = cv2.putText(color, lang_goal[i*line_length:(i+1)*line_length], org=(lang_textX, 570+i*30), # 600
                                fontScale=font_scale,
                                fontFace=font,
                                color=(0, 0, 0),
                                thickness=font_thickness, lineType=cv2.LINE_AA)

            ## Write Reward.
            # reward_textsize = cv2.getTextSize(reward, font, font_scale, font_thickness)[0]
            # reward_textX = (image_size[1] - reward_textsize[0]) // 2
            #
            # color = cv2.putText(color, reward, org=(reward_textX, 634),
            #                     fontScale=font_scale,
            #                     fontFace=font,
            #                     color=(0, 0, 0),
            #                     thickness=font_thickness, lineType=cv2.LINE_AA)

            color = np.array(color)

        if 'add_task_text' in self.record_cfg and self.record_cfg['add_task_text']:
            lang_goal = self.get_task_name()
            reward = f"Success: {self.task.get_reward():.3f}"

            font = cv2.FONT_HERSHEY_DUPLEX
            font_scale = 1
            font_thickness =  2

            # Write language goal.
            lang_textsize = cv2.getTextSize(lang_goal, font, font_scale, font_thickness)[0]
            lang_textX = (image_size[1] - lang_textsize[0]) // 2

            color = cv2.putText(color, lang_goal, org=(lang_textX, 600),
                                fontScale=font_scale,
                                fontFace=font,
                                color=(255, 0, 0),
                                thickness=font_thickness, lineType=cv2.LINE_AA)

            color = np.array(color)

        self.video_writer.append_data(color)
        self.curr_video.append(color)

    def movep(self, pose, speed=0.01):
        """Move UR5 to target end effector pose."""
        targj = self.solve_ik(pose)
        return self.movej(targj, speed)

    def solve_ik(self, pose):
        """Calculate joint configuration with inverse kinematics."""
        joints = p.calculateInverseKinematics(
            bodyUniqueId=self.ur5,
            endEffectorLinkIndex=self.ee_tip,
            targetPosition=pose[0],
            targetOrientation=pose[1],
            lowerLimits=[-3 * np.pi / 2, -2.3562, -17, -17, -17, -17],
            upperLimits=[-np.pi / 2, 0, 17, 17, 17, 17],
            jointRanges=[np.pi, 2.3562, 34, 34, 34, 34],  # * 6,
            restPoses=np.float32(self.homej).tolist(),
            maxNumIterations=100,
            residualThreshold=1e-5)
        joints = np.float32(joints)
        joints[2:] = (joints[2:] + np.pi) % (2 * np.pi) - np.pi
        return joints

    def _get_obs(self):
        # Get RGB-D camera image observations.
        obs = {'color': (), 'depth': ()}
        for config in self.agent_cams:
            color, depth, _ = self.render_camera(config)
            obs['color'] += (color,)
            obs['depth'] += (depth,)

        return obs

    def get_object_pose(self, obj_id):
        return p.getBasePositionAndOrientation(obj_id)

    def get_object_size(self, obj_id):
        """ approximate object's size using AABB """
        aabb_min, aabb_max = p.getAABB(obj_id)

        size_x = aabb_max[0] - aabb_min[0]
        size_y = aabb_max[1] - aabb_min[1]
        size_z = aabb_max[2] - aabb_min[2]
        return size_z * size_y * size_x



class EnvironmentNoRotationsWithHeightmap(Environment):
    """Environment that disables any rotations and always passes [0, 0, 0, 1]."""

    def __init__(self,
                 assets_root,
                 task=None,
                 disp=False,
                 shared_memory=False,
                 hz=240):
        super(EnvironmentNoRotationsWithHeightmap,
              self).__init__(assets_root, task, disp, shared_memory, hz)

        heightmap_tuple = [
            gym.spaces.Box(0.0, 20.0, (320, 160, 3), dtype=np.float32),
            gym.spaces.Box(0.0, 20.0, (320, 160), dtype=np.float32),
        ]
        self.observation_space = gym.spaces.Dict({
            'heightmap': gym.spaces.Tuple(heightmap_tuple),
        })
        self.action_space = gym.spaces.Dict({
            'pose0': gym.spaces.Tuple((self.position_bounds,)),
            'pose1': gym.spaces.Tuple((self.position_bounds,))
        })

    def step(self, action=None):
        """Execute action with specified primitive.

        Args:
          action: action to execute.

        Returns:
          (obs, reward, done, info) tuple containing MDP step data.
        """
        if action is not None:
            action = {
                'pose0': (action['pose0'][0], [0., 0., 0., 1.]),
                'pose1': (action['pose1'][0], [0., 0., 0., 1.]),
            }
        return super(EnvironmentNoRotationsWithHeightmap, self).step(action)

    def _get_obs(self):
        obs = {}

        color_depth_obs = {'color': (), 'depth': ()}
        for config in self.agent_cams:
            color, depth, _ = self.render_camera(config)
            color_depth_obs['color'] += (color,)
            color_depth_obs['depth'] += (depth,)
        cmap, hmap = utils.get_fused_heightmap(color_depth_obs, self.agent_cams,
                                               self.task.bounds, pix_size=0.003125)
        obs['heightmap'] = (cmap, hmap)
        return obs