Spaces:
Runtime error
Runtime error
File size: 14,956 Bytes
8fc2b4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
# coding=utf-8
# Copyright 2022 The Ravens Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data collection script."""
import os
import numpy as np
import os
import hydra
import numpy as np
import random
from cliport import tasks
from cliport.dataset import RavensDataset
from cliport.environments.environment import Environment
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import TerminalFormatter
import re
import openai
import IPython
import time
import pybullet as p
import traceback
from datetime import datetime
from pprint import pprint
import cv2
import re
import random
import json
from cliport.simgen_utils import (mkdir_if_missing,
save_text,
add_to_txt,
extract_code,
extract_dict,
extract_list,
extract_assets,
format_dict_prompt,
sample_list_reference,
save_stat,
compute_diversity_score_from_assets)
openai.api_key = "YOUR_KEY"
model = "gpt-4"
NEW_TASK_LIST = []
full_interaction = ''
def generate_feedback(prompt, max_tokens=2048, temperature=0.0, model="gpt-4", assistant_prompt=None, interaction_txt=None):
""" use GPT-4 API """
params = {
"model": model,
"max_tokens": max_tokens,
"temperature": temperature,
"messages": [
{"role": "user", "content": prompt}],
}
if assistant_prompt is not None:
params["messages"].append({"role": "assistant", "content": assistant_prompt})
for retry in range(3):
try:
if interaction_txt is not None:
interaction_txt = add_to_txt(interaction_txt, ">>> Prompt: \n" + prompt, with_print=False)
res = openai.ChatCompletion.create(**params)["choices"][0]["message"]["content"]
to_print = highlight(f"{res}", PythonLexer(), TerminalFormatter())
print(to_print)
if interaction_txt is not None:
interaction_txt = add_to_txt(interaction_txt, ">>> Answer: \n" + res, with_print=False)
return res, interaction_txt
return res
except Exception as e:
print("failed chat completion", e)
raise Exception("Failed to generate")
def llm_gen_env(cfg, model_output_dir):
"""
The LLM running pipeline
"""
global full_interaction
start_time = time.time()
prompt_folder = f"prompts/{cfg['prompt_folder']}"
task_prompt_text = open(f"{prompt_folder}/cliport_prompt_task.txt").read()
res, full_interaction = generate_feedback(task_prompt_text, temperature=cfg['gpt_temperature'], interaction_txt=full_interaction)
# Extract dictionary for task name, descriptions, and assets
task_def = extract_dict(res, prefix="new_task")
exec(task_def, globals())
full_interaction = add_to_txt(full_interaction, "================= Task and Asset Design!", with_print=True)
pprint(new_task)
save_text(model_output_dir, f'{new_task["task-name"]}_task_def_output', res)
# Asset Generation
if os.path.exists(f"{prompt_folder}/cliport_prompt_asset_template.txt"):
full_interaction = add_to_txt(full_interaction, "================= Asset Generation!", with_print=True)
asset_prompt_text = open(f'{prompt_folder}/cliport_prompt_asset_template.txt').read()
asset_prompt_text = asset_prompt_text.replace("TASK_NAME_TEMPLATE", new_task["task-name"])
asset_prompt_text = asset_prompt_text.replace("ASSET_STRING_TEMPLATE", str(new_task["assets-used"]))
res, full_interaction = generate_feedback(asset_prompt_text, temperature=0, assistant_prompt=res, interaction_txt=full_interaction) # cfg['gpt_temperature']
save_text(model_output_dir, f'{new_task["task-name"]}_asset_output', res)
asset_list = extract_assets(res)
# save_urdf(asset_list)
else:
asset_list = {}
# API Preview
if os.path.exists(f"{prompt_folder}/cliport_prompt_api_template.txt"):
full_interaction = add_to_txt(full_interaction,"================= API Preview!")
api_prompt_text = open(f'{prompt_folder}/cliport_prompt_api_template.txt').read()
api_prompt_text = api_prompt_text.replace("TASK_NAME_TEMPLATE", new_task["task-name"])
res, full_interaction = generate_feedback(api_prompt_text, temperature=0, assistant_prompt=res, interaction_txt=full_interaction) # cfg['gpt_temperature']
# Error Preview
if os.path.exists(f"{prompt_folder}/cliport_prompt_common_errors_template.txt"):
full_interaction = add_to_txt(full_interaction,"================= Error Book Preview!")
errorbook_prompt_text = open(f'{prompt_folder}/cliport_prompt_common_errors_template.txt').read()
errorbook_prompt_text = errorbook_prompt_text.replace("TASK_NAME_TEMPLATE", new_task["task-name"])
res, full_interaction = generate_feedback(errorbook_prompt_text, temperature=0., assistant_prompt=res, interaction_txt=full_interaction) # cfg['gpt_temperature']
# Generate Code
if os.path.exists(f"{prompt_folder}/cliport_prompt_code_split_template.txt"):
full_interaction = add_to_txt(full_interaction,"================= Code Generation!")
code_prompt_text = open(f"{prompt_folder}/cliport_prompt_code_split_template.txt").read()
code_prompt_text = code_prompt_text.replace("TASK_NAME_TEMPLATE", new_task["task-name"])
code_prompt_text = code_prompt_text.replace("TASK_STRING_TEMPLATE", str(new_task))
res, full_interaction = generate_feedback(code_prompt_text, temperature=0., assistant_prompt=res, interaction_txt=full_interaction) # cfg['gpt_temperature']
code, task_name = extract_code(res)
if len(task_name) == 0:
print("empty task name:", task_name)
return None
save_text(model_output_dir, task_name + '_code_output', code)
try:
exec(code, globals())
except:
print(str(traceback.format_exc()))
return None
cfg['task'] = new_task["task-name"]
print("save all interaction to :", f'{new_task["task-name"]}_full_output')
save_text(model_output_dir, f'{new_task["task-name"]}_full_output', full_interaction)
print(f"\n\nLLM generation time: {time.time() - start_time}")
return task_name, new_task, asset_list, code
@hydra.main(config_path='./cfg', config_name='data')
def main(cfg):
global full_interaction
# Evaluation Metric
SYNTAX_PASS_RATE = 0.
RUNTIME_PASS_RATE = 0.
ENV_PASS_RATE = 0.
DIVERSITY_SCORES = 0
task_assets = []
start_time = time.time()
output_folder = 'output/output_stats'
model_time = datetime.now().strftime("%d_%m_%Y_%H:%M:%S")
model_output_dir = os.path.join(output_folder, cfg['prompt_folder'] + "_" + model_time)
TOTAL_TRIALS = cfg['trials']
env_names = []
for trial_i in range(TOTAL_TRIALS):
# generate
res = llm_gen_env(cfg, model_output_dir)
if res is not None:
SYNTAX_PASS_RATE += 1
task_name, new_task, asset_list, code = res
task_assets.append(new_task["assets-used"])
env_names.append(task_name)
else:
env_names.append("")
print("Syntax Failure")
continue
try:
env = Environment(
cfg['assets_root'],
disp=cfg['disp'],
shared_memory=cfg['shared_memory'],
hz=480,
record_cfg=cfg['record']
)
task = eval(task_name)()
task.mode = cfg['mode']
record = cfg['record']['save_video']
save_data = cfg['save_data']
# Initialize scripted oracle agent and dataset.
agent = task.oracle(env)
data_path = os.path.join(cfg['data_dir'], "{}-{}".format(cfg['task'], task.mode))
dataset = RavensDataset(data_path, cfg, n_demos=0, augment=False)
print(f"Saving to: {data_path}")
print(f"Mode: {task.mode}")
# Train seeds are even and val/test seeds are odd. Test seeds are offset by 10000
seed = dataset.max_seed
total_cnt = 0.
reset_success_cnt = 0.
env_success_cnt = 0.
# Start video recording (NOTE: super slow)
if record:
env.start_rec(f'{dataset.n_episodes+1:06d}')
# Collect training data from oracle demonstrations.
# while dataset.n_episodes < cfg['n']:
while total_cnt < cfg['max_env_run_cnt']:
total_cnt += 1
if total_cnt == cfg['max_env_run_cnt'] or total_cnt == cfg['n']:
if reset_success_cnt == total_cnt - 1:
RUNTIME_PASS_RATE += 1
print("Runtime Test Pass!")
# the task can actually be completed with oracle
if env_success_cnt >= total_cnt / 2:
ENV_PASS_RATE += 1
print("Environment Test Pass!")
else:
print("Bad task design!! Reset!")
break
episode, total_reward = [], 0
seed += 2
# Set seeds.
np.random.seed(seed)
random.seed(seed)
print('Oracle demo: {}/{} | Seed: {}'.format(dataset.n_episodes + 1, cfg['n'], seed))
env.set_task(task)
try:
obs = env.reset()
except Exception as e:
print("reset exception:", str(traceback.format_exc()))
continue
info = env.info
reward = 0
# Rollout expert policy
for _ in range(task.max_steps):
act = agent.act(obs, info)
episode.append((obs, act, reward, info))
lang_goal = info['lang_goal']
obs, reward, done, info = env.step(act)
total_reward += reward
print(f'Total Reward: {total_reward:.3f} | Done: {done} | Goal: {lang_goal}')
if done:
break
episode.append((obs, None, reward, info))
# End video recording
if record:
env.end_rec()
# Only save completed demonstrations.
if save_data and total_reward > 0.99:
dataset.add(seed, episode)
reset_success_cnt += 1
env_success_cnt += total_reward > 0.99
p.disconnect()
except:
to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
save_text(model_output_dir, task_name + '_error', str(traceback.format_exc()))
print("========================================================")
print("Exception:", to_print)
p.disconnect()
print("=========================================================")
print(f"SYNTAX_PASS_RATE: {(SYNTAX_PASS_RATE / (trial_i+1)) * 100:.1f}% RUNTIME_PASS_RATE: {(RUNTIME_PASS_RATE / (trial_i+1)) * 100:.1f}% ENV_PASS_RATE: {(ENV_PASS_RATE / (trial_i+1)) * 100:.1f}%")
print("=========================================================")
prompt_folder = f"prompts/{cfg['prompt_folder']}"
if os.path.exists(f"{prompt_folder}/cliport_prompt_task_reflection.txt") and env_success_cnt >= 1:
# only consider successful task
full_interaction = add_to_txt(full_interaction,"================= Code Reflect!")
base_task_path = os.path.join("prompts/data", 'base_tasks.json')
base_tasks = json.load(open(base_task_path))
# append current new task
for task in NEW_TASK_LIST:
base_tasks[task["task-name"].replace("-", "_")] = str(task)
task_descriptions_replacement_str = format_dict_prompt(base_tasks, -1)
code_reflection_prompt_text = open(f"{prompt_folder}/cliport_prompt_task_reflection.txt").read()
code_reflection_prompt_text = code_reflection_prompt_text.replace("CURRENT_TASK_NAME_TEMPLATE", str(task_descriptions_replacement_str))
code_reflection_prompt_text = code_reflection_prompt_text.replace("TASK_STRING_TEMPLATE", str(new_task))
res, full_interaction = generate_feedback(code_reflection_prompt_text, temperature=0., interaction_txt=full_interaction) # cfg['gpt_temperature']
reflection_def_cmd = extract_dict(res, prefix='task_reflection')
exec(reflection_def_cmd, globals())
print("save task result:", task_reflection)
if task_reflection["add_to_the_task_list"] == 'True':
NEW_TASK_LIST.append(new_task)
if cfg['save_memory']:
print("actually saving!")
# write the python file and append to the task descriptions
generated_task_code_path = os.path.join(cfg['prompt_data_path'], 'generated_task_codes.json')
generated_task_codes = json.load(open(generated_task_code_path))
generated_task_codes.append(new_task["task-name"] + ".py")
with open('cliport/generated_tasks/' + new_task["task-name"].replace("-","_") + ".py", "w") as fhandle:
fhandle.write(code)
with open(generated_task_code_path, "w") as outfile:
json.dump(generated_task_codes, outfile, indent=4)
generated_task_path = os.path.join(cfg['prompt_data_path'], 'generated_tasks.json')
generated_tasks = json.load(open(generated_task_path))
generated_tasks[new_task["task-name"]] = new_task
with open(generated_task_path, "w") as outfile:
json.dump(generated_tasks, outfile, indent=4)
print("task_assets:", task_assets)
DIVERSITY_SCORE = compute_diversity_score_from_assets(task_assets)
save_stat(cfg, model_output_dir, env_names, SYNTAX_PASS_RATE / TOTAL_TRIALS, RUNTIME_PASS_RATE / TOTAL_TRIALS, ENV_PASS_RATE / TOTAL_TRIALS, DIVERSITY_SCORE)
print(f"Total {len(NEW_TASK_LIST)} New Added Tasks:", NEW_TASK_LIST)
if __name__ == '__main__':
main()
|