Spaces:
Runtime error
Runtime error
File size: 19,490 Bytes
8fc2b4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import os
import numpy as np
import torch
import torch.nn.functional as F
from pytorch_lightning import LightningModule
from cliport.tasks import cameras
from cliport.utils import utils
from cliport.models.core.attention import Attention
from cliport.models.core.transport import Transport
from cliport.models.streams.two_stream_attention import TwoStreamAttention
from cliport.models.streams.two_stream_transport import TwoStreamTransport
from cliport.models.streams.two_stream_attention import TwoStreamAttentionLat
from cliport.models.streams.two_stream_transport import TwoStreamTransportLat
import time
import IPython
class TransporterAgent(LightningModule):
def __init__(self, name, cfg, train_ds, test_ds):
super().__init__()
utils.set_seed(0)
self.automatic_optimization=False
self.device_type = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # this is bad for PL :(
self.name = name
self.cfg = cfg
self.train_loader = train_ds
self.test_loader = test_ds
self.train_ds = train_ds.dataset
self.test_ds = test_ds.dataset
self.name = name
self.task = cfg['train']['task']
self.total_steps = 0
self.crop_size = 64
self.n_rotations = cfg['train']['n_rotations']
self.pix_size = 0.003125
self.in_shape = (320, 160, 6)
self.cam_config = cameras.RealSenseD415.CONFIG
self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
self.val_repeats = cfg['train']['val_repeats']
self.save_steps = cfg['train']['save_steps']
self._build_model()
##
# reduce the number of parameters here
##
self._optimizers = {
'attn': torch.optim.Adam(self.attention.parameters(), lr=self.cfg['train']['lr']),
'trans': torch.optim.Adam(self.transport.parameters(), lr=self.cfg['train']['lr'])
}
print("Agent: {}, Logging: {}".format(name, cfg['train']['log']))
def configure_optimizers(self):
return self._optimizers
def _build_model(self):
self.attention = None
self.transport = None
raise NotImplementedError()
def forward(self, x):
raise NotImplementedError()
def cross_entropy_with_logits(self, pred, labels, reduction='mean'):
# Lucas found that both sum and mean work equally well
x = (-labels.view(len(labels), -1) * F.log_softmax(pred.view(len(labels), -1), -1))
if reduction == 'sum':
return x.sum()
elif reduction == 'mean':
return x.mean()
else:
raise NotImplementedError()
def attn_forward(self, inp, softmax=True):
inp_img = inp['inp_img']
output = self.attention.forward(inp_img, softmax=softmax)
return output
def attn_training_step(self, frame, backprop=True, compute_err=False):
inp_img = frame['img']
p0, p0_theta = frame['p0'], frame['p0_theta']
inp = {'inp_img': inp_img}
out = self.attn_forward(inp, softmax=False)
return self.attn_criterion(backprop, compute_err, inp, out, p0, p0_theta)
def attn_criterion(self, backprop, compute_err, inp, out, p, theta):
# Get label.
if type(theta) is torch.Tensor:
theta = theta.detach().cpu().numpy()
theta_i = theta / (2 * np.pi / self.attention.n_rotations)
theta_i = np.int32(np.round(theta_i)) % self.attention.n_rotations
inp_img = inp['inp_img'].float()
label_size = inp_img.shape[:3] + (self.attention.n_rotations,)
label = torch.zeros(label_size, dtype=torch.float, device=out.device)
# remove this for-loop laters
for idx, p_i in enumerate(p):
label[idx, int(p_i[0]), int(p_i[1]), theta_i[idx]] = 1
label = label.permute((0, 3, 1, 2)).contiguous()
# Get loss.
loss = self.cross_entropy_with_logits(out, label)
# Backpropagate.
if backprop:
attn_optim = self._optimizers['attn']
self.manual_backward(loss)
attn_optim.step()
attn_optim.zero_grad()
# Pixel and Rotation error (not used anywhere).
err = {}
if compute_err:
with torch.no_grad():
pick_conf = self.attn_forward(inp)
pick_conf = pick_conf[0].permute(1,2,0)
pick_conf = pick_conf.detach().cpu().numpy()
p = p[0]
theta = theta[0]
# single batch
argmax = np.argmax(pick_conf)
argmax = np.unravel_index(argmax, shape=pick_conf.shape)
p0_pix = argmax[:2]
p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2])
err = {
'dist': np.linalg.norm(np.array(p.detach().cpu().numpy()) - p0_pix, ord=1),
'theta': np.absolute((theta - p0_theta) % np.pi)
}
return loss, err
def trans_forward(self, inp, softmax=True):
inp_img = inp['inp_img']
p0 = inp['p0']
output = self.transport.forward(inp_img, p0, softmax=softmax)
return output
def transport_training_step(self, frame, backprop=True, compute_err=False):
inp_img = frame['img'].float()
p0 = frame['p0']
p1, p1_theta = frame['p1'], frame['p1_theta']
inp = {'inp_img': inp_img, 'p0': p0}
output = self.trans_forward(inp, softmax=False)
err, loss = self.transport_criterion(backprop, compute_err, inp, output, p0, p1, p1_theta)
return loss, err
def transport_criterion(self, backprop, compute_err, inp, output, p, q, theta):
s = time.time()
if type(theta) is torch.Tensor:
theta = theta.detach().cpu().numpy()
itheta = theta / (2 * np.pi / self.transport.n_rotations)
itheta = np.int32(np.round(itheta)) % self.transport.n_rotations
# Get one-hot pixel label map.
inp_img = inp['inp_img']
# label_size = inp_img.shape[:2] + (self.transport.n_rotations,)
label_size = inp_img.shape[:3] + (self.transport.n_rotations,)
label = torch.zeros(label_size, dtype=torch.float, device=output.device)
# remove this for-loop laters
q[:,0] = torch.clamp(q[:,0], 0, label.shape[1]-1)
q[:,1] = torch.clamp(q[:,1], 0, label.shape[2]-1)
for idx, q_i in enumerate(q):
label[idx, int(q_i[0]), int(q_i[1]), itheta[idx]] = 1
label = label.permute((0, 3, 1, 2)).contiguous()
# Get loss.
loss = self.cross_entropy_with_logits(output, label)
if backprop:
transport_optim = self._optimizers['trans']
transport_optim.zero_grad()
self.manual_backward(loss)
transport_optim.step()
# Pixel and Rotation error (not used anywhere).
err = {}
if compute_err:
with torch.no_grad():
place_conf = self.trans_forward(inp)
# pick the first batch
place_conf = place_conf[0]
q = q[0]
theta = theta[0]
place_conf = place_conf.permute(1, 2, 0)
place_conf = place_conf.detach().cpu().numpy()
argmax = np.argmax(place_conf)
argmax = np.unravel_index(argmax, shape=place_conf.shape)
p1_pix = argmax[:2]
p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2])
err = {
'dist': np.linalg.norm(np.array(q.detach().cpu().numpy()) - p1_pix, ord=1),
'theta': np.absolute((theta - p1_theta) % np.pi)
}
self.transport.iters += 1
return err, loss
def training_step(self, batch, batch_idx):
self.attention.train()
self.transport.train()
frame, _ = batch
self.start_time = time.time()
# Get training losses.
step = self.total_steps + 1
loss0, err0 = self.attn_training_step(frame)
self.start_time = time.time()
if isinstance(self.transport, Attention):
loss1, err1 = self.attn_training_step(frame)
else:
loss1, err1 = self.transport_training_step(frame)
total_loss = loss0 + loss1
self.total_steps = step
self.start_time = time.time()
self.log('tr/attn/loss', loss0)
self.log('tr/trans/loss', loss1)
self.log('tr/loss', total_loss)
self.check_save_iteration()
return dict(
loss=total_loss,
)
def check_save_iteration(self):
global_step = self.total_steps
if (global_step + 1) % 100 == 0:
# save lastest checkpoint
print(f"Saving last.ckpt Epoch: {self.trainer.current_epoch} | Global Step: {self.trainer.global_step}")
self.save_last_checkpoint()
def save_last_checkpoint(self):
checkpoint_path = os.path.join(self.cfg['train']['train_dir'], 'checkpoints')
ckpt_path = os.path.join(checkpoint_path, 'last.ckpt')
self.trainer.save_checkpoint(ckpt_path)
def validation_step(self, batch, batch_idx):
self.attention.eval()
self.transport.eval()
loss0, loss1 = 0, 0
assert self.val_repeats >= 1
for i in range(self.val_repeats):
frame, _ = batch
l0, err0 = self.attn_training_step(frame, backprop=False, compute_err=True)
loss0 += l0
if isinstance(self.transport, Attention):
l1, err1 = self.attn_training_step(frame, backprop=False, compute_err=True)
loss1 += l1
else:
l1, err1 = self.transport_training_step(frame, backprop=False, compute_err=True)
loss1 += l1
loss0 /= self.val_repeats
loss1 /= self.val_repeats
val_total_loss = loss0 + loss1
return dict(
val_loss=val_total_loss,
val_loss0=loss0,
val_loss1=loss1,
val_attn_dist_err=err0['dist'],
val_attn_theta_err=err0['theta'],
val_trans_dist_err=err1['dist'],
val_trans_theta_err=err1['theta'],
)
def training_epoch_end(self, all_outputs):
super().training_epoch_end(all_outputs)
utils.set_seed(self.trainer.current_epoch+1)
def validation_epoch_end(self, all_outputs):
mean_val_total_loss = np.mean([v['val_loss'].item() for v in all_outputs])
mean_val_loss0 = np.mean([v['val_loss0'].item() for v in all_outputs])
mean_val_loss1 = np.mean([v['val_loss1'].item() for v in all_outputs])
total_attn_dist_err = np.sum([v['val_attn_dist_err'].sum() for v in all_outputs])
total_attn_theta_err = np.sum([v['val_attn_theta_err'].sum() for v in all_outputs])
total_trans_dist_err = np.sum([v['val_trans_dist_err'].sum() for v in all_outputs])
total_trans_theta_err = np.sum([v['val_trans_theta_err'].sum() for v in all_outputs])
self.log('vl/attn/loss', mean_val_loss0)
self.log('vl/trans/loss', mean_val_loss1)
self.log('vl/loss', mean_val_total_loss)
self.log('vl/total_attn_dist_err', total_attn_dist_err)
self.log('vl/total_attn_theta_err', total_attn_theta_err)
self.log('vl/total_trans_dist_err', total_trans_dist_err)
self.log('vl/total_trans_theta_err', total_trans_theta_err)
print("\nAttn Err - Dist: {:.2f}, Theta: {:.2f}".format(total_attn_dist_err, total_attn_theta_err))
print("Transport Err - Dist: {:.2f}, Theta: {:.2f}".format(total_trans_dist_err, total_trans_theta_err))
return dict(
val_loss=mean_val_total_loss,
val_loss0=mean_val_loss0,
mean_val_loss1=mean_val_loss1,
total_attn_dist_err=total_attn_dist_err,
total_attn_theta_err=total_attn_theta_err,
total_trans_dist_err=total_trans_dist_err,
total_trans_theta_err=total_trans_theta_err,
)
def act(self, obs, info=None, goal=None): # pylint: disable=unused-argument
"""Run inference and return best action given visual observations."""
# Get heightmap from RGB-D images.
img = self.test_ds.get_image(obs)
# Attention model forward pass.
pick_inp = {'inp_img': img}
pick_conf = self.attn_forward(pick_inp)
pick_conf = pick_conf.detach().cpu().numpy()
argmax = np.argmax(pick_conf)
argmax = np.unravel_index(argmax, shape=pick_conf.shape)
p0_pix = argmax[:2]
p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2])
# Transport model forward pass.
place_inp = {'inp_img': img, 'p0': p0_pix}
place_conf = self.trans_forward(place_inp)
place_conf = place_conf.permute(1, 2, 0)
place_conf = place_conf.detach().cpu().numpy()
argmax = np.argmax(place_conf)
argmax = np.unravel_index(argmax, shape=place_conf.shape)
p1_pix = argmax[:2]
p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2])
# Pixels to end effector poses.
hmap = img[:, :, 3]
p0_xyz = utils.pix_to_xyz(p0_pix, hmap, self.bounds, self.pix_size)
p1_xyz = utils.pix_to_xyz(p1_pix, hmap, self.bounds, self.pix_size)
p0_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p0_theta))
p1_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p1_theta))
return {
'pose0': (np.asarray(p0_xyz), np.asarray(p0_xyzw)),
'pose1': (np.asarray(p1_xyz), np.asarray(p1_xyzw)),
'pick': p0_pix,
'place': p1_pix,
}
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_i, second_order_closure, on_tpu, using_native_amp, using_lbfgs):
pass
def configure_optimizers(self):
pass
def train_dataloader(self):
return self.train_loader
def val_dataloader(self):
return self.test_loader
def load(self, model_path):
self.load_state_dict(torch.load(model_path)['state_dict'])
self.to(device=self.device_type)
class OriginalTransporterAgent(TransporterAgent):
def __init__(self, name, cfg, train_ds, test_ds):
super().__init__(name, cfg, train_ds, test_ds)
def _build_model(self):
stream_fcn = 'plain_resnet'
self.attention = Attention(
stream_fcn=(stream_fcn, None),
in_shape=self.in_shape,
n_rotations=1,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
self.transport = Transport(
stream_fcn=(stream_fcn, None),
in_shape=self.in_shape,
n_rotations=self.n_rotations,
crop_size=self.crop_size,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
class ClipUNetTransporterAgent(TransporterAgent):
def __init__(self, name, cfg, train_ds, test_ds):
super().__init__(name, cfg, train_ds, test_ds)
def _build_model(self):
stream_fcn = 'clip_unet'
self.attention = Attention(
stream_fcn=(stream_fcn, None),
in_shape=self.in_shape,
n_rotations=1,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
self.transport = Transport(
stream_fcn=(stream_fcn, None),
in_shape=self.in_shape,
n_rotations=self.n_rotations,
crop_size=self.crop_size,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
class TwoStreamClipUNetTransporterAgent(TransporterAgent):
def __init__(self, name, cfg, train_ds, test_ds):
super().__init__(name, cfg, train_ds, test_ds)
def _build_model(self):
stream_one_fcn = 'plain_resnet'
stream_two_fcn = 'clip_unet'
self.attention = TwoStreamAttention(
stream_fcn=(stream_one_fcn, stream_two_fcn),
in_shape=self.in_shape,
n_rotations=1,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
self.transport = TwoStreamTransport(
stream_fcn=(stream_one_fcn, stream_two_fcn),
in_shape=self.in_shape,
n_rotations=self.n_rotations,
crop_size=self.crop_size,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
class TwoStreamClipUNetLatTransporterAgent(TransporterAgent):
def __init__(self, name, cfg, train_ds, test_ds):
super().__init__(name, cfg, train_ds, test_ds)
def _build_model(self):
stream_one_fcn = 'plain_resnet_lat'
stream_two_fcn = 'clip_unet_lat'
self.attention = TwoStreamAttentionLat(
stream_fcn=(stream_one_fcn, stream_two_fcn),
in_shape=self.in_shape,
n_rotations=1,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
self.transport = TwoStreamTransportLat(
stream_fcn=(stream_one_fcn, stream_two_fcn),
in_shape=self.in_shape,
n_rotations=self.n_rotations,
crop_size=self.crop_size,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
class TwoStreamClipWithoutSkipsTransporterAgent(TransporterAgent):
def __init__(self, name, cfg, train_ds, test_ds):
super().__init__(name, cfg, train_ds, test_ds)
def _build_model(self):
# TODO: lateral version
stream_one_fcn = 'plain_resnet'
stream_two_fcn = 'clip_woskip'
self.attention = TwoStreamAttention(
stream_fcn=(stream_one_fcn, stream_two_fcn),
in_shape=self.in_shape,
n_rotations=1,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
self.transport = TwoStreamTransport(
stream_fcn=(stream_one_fcn, stream_two_fcn),
in_shape=self.in_shape,
n_rotations=self.n_rotations,
crop_size=self.crop_size,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
class TwoStreamRN50BertUNetTransporterAgent(TransporterAgent):
def __init__(self, name, cfg, train_ds, test_ds):
super().__init__(name, cfg, train_ds, test_ds)
def _build_model(self):
# TODO: lateral version
stream_one_fcn = 'plain_resnet'
stream_two_fcn = 'rn50_bert_unet'
self.attention = TwoStreamAttention(
stream_fcn=(stream_one_fcn, stream_two_fcn),
in_shape=self.in_shape,
n_rotations=1,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
self.transport = TwoStreamTransport(
stream_fcn=(stream_one_fcn, stream_two_fcn),
in_shape=self.in_shape,
n_rotations=self.n_rotations,
crop_size=self.crop_size,
preprocess=utils.preprocess,
cfg=self.cfg,
device=self.device_type,
)
|