Spaces:
Runtime error
Runtime error
File size: 27,501 Bytes
8fc2b4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
"""Base Task class."""
import collections
import os
import random
import string
import tempfile
import cv2
import numpy as np
from cliport.tasks import cameras
from cliport.tasks import primitives
from cliport.tasks.grippers import Suction
from cliport.utils import utils
from cliport.tasks import primitives
from cliport.tasks.grippers import Spatula
import pybullet as p
from typing import Tuple, List
import re
class Task():
"""Base Task class."""
def __init__(self):
self.ee = Suction
self.mode = 'train'
self.sixdof = False
self.primitive = primitives.PickPlace()
self.oracle_cams = cameras.Oracle.CONFIG
# Evaluation epsilons (for pose evaluation metric).
self.pos_eps = 0.01
self.rot_eps = np.deg2rad(15)
# for piles
self.num_blocks = 50
# Workspace bounds.
self.pix_size = 0.003125
self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.3]])
self.zone_bounds = np.copy(self.bounds)
self.goals = []
self.lang_goals = []
self.obj_points_cache = {}
self.task_completed_desc = "task completed."
self.progress = 0
self._rewards = 0
self.train_set = np.arange(0, 14)
self.test_set = np.arange(14, 20)
self.assets_root = None
self.homogeneous = False
def reset(self, env):
if not self.assets_root:
raise ValueError('assets_root must be set for task, '
'call set_assets_root().')
self.goals = []
self.lang_goals = []
self.progress = 0 # Task progression metric in range [0, 1].
self._rewards = 0 # Cumulative returned rewards.
self.obj_points_cache = {}
def additional_reset(self):
# Additional changes to make the environment adaptable
if 'bowl' in self.lang_template:
# IMPORTANT: increase position tolerance for bowl placement
self.pos_eps = 0.05
if 'piles' in self.lang_template:
# IMPORTANT: Define the primitive to be push and ee to be spatula for tasks involving piles
self.ee = Spatula
self.primitive = primitives.push
if 'rope' in self.lang_template:
self.primitive = primitives.PickPlace(height=0.02, speed=0.001)
self.pos_eps = 0.02
# -------------------------------------------------------------------------
# Oracle Agent
# -------------------------------------------------------------------------
def oracle(self, env):
"""Oracle agent."""
OracleAgent = collections.namedtuple('OracleAgent', ['act'])
def act(obs, info):
"""Calculate action."""
# Oracle uses perfect RGB-D orthographic images and segmentation masks.
_, hmap, obj_mask = self.get_true_image(env)
# Unpack next goal step.
objs, matches, targs, replace, rotations, _, _, _ = self.goals[0]
for j, targ in enumerate(targs):
# add default orientation if missing
if len(targ) == 3 and (type(targs[j][0]) is float or type(targs[j][0]) is np.float32):
targs[j] = (targs[j], (0,0,0,1))
# Match objects to targets without replacement.
if not replace:
# Modify a copy of the match matrix.
matches = matches.copy()
# Ignore already matched objects.
for i in range(len(objs)):
if type(objs[i]) is int:
objs[i] = (objs[i], (False, None))
object_id, (symmetry, _) = objs[i]
pose = p.getBasePositionAndOrientation(object_id)
targets_i = np.argwhere(matches[i, :]).reshape(-1)
for j in targets_i:
if self.is_match(pose, targs[j], symmetry):
matches[i, :] = 0
matches[:, j] = 0
# Get objects to be picked (prioritize farthest from nearest neighbor).
nn_dists = []
nn_targets = []
for i in range(len(objs)):
if type(objs[i]) is int:
objs[i] = (objs[i], (False, None))
object_id, (symmetry, _) = objs[i]
xyz, _ = p.getBasePositionAndOrientation(object_id)
targets_i = np.argwhere(matches[i, :]).reshape(-1)
if len(targets_i) > 0:
targets_xyz = np.float32([targs[j][0] for j in targets_i])
dists = np.linalg.norm(
targets_xyz - np.float32(xyz).reshape(1, 3), axis=1)
nn = np.argmin(dists)
nn_dists.append(dists[nn])
nn_targets.append(targets_i[nn])
# Handle ignored objects.
else:
nn_dists.append(0)
nn_targets.append(-1)
order = np.argsort(nn_dists)[::-1]
# Filter out matched objects.
order = [i for i in order if nn_dists[i] > 0]
pick_mask = None
for pick_i in order:
pick_mask = np.uint8(obj_mask == objs[pick_i][0])
# Erode to avoid picking on edges.
pick_mask = cv2.erode(pick_mask, np.ones((3, 3), np.uint8))
if np.sum(pick_mask) > 0:
break
# Trigger task reset if no object is visible.
if pick_mask is None or np.sum(pick_mask) == 0:
self.goals = []
self.lang_goals = []
print('Object for pick is not visible. Skipping demonstration.')
return
# Get picking pose.
pick_prob = np.float32(pick_mask)
pick_pix = utils.sample_distribution(pick_prob)
# For "deterministic" demonstrations on insertion-easy, use this:
pick_pos = utils.pix_to_xyz(pick_pix, hmap,
self.bounds, self.pix_size)
pick_pose = (np.asarray(pick_pos), np.asarray((0, 0, 0, 1)))
# Get placing pose.
targ_pose = targs[nn_targets[pick_i]]
obj_pose = p.getBasePositionAndOrientation(objs[pick_i][0])
if not self.sixdof:
obj_euler = utils.quatXYZW_to_eulerXYZ(obj_pose[1])
obj_quat = utils.eulerXYZ_to_quatXYZW((0, 0, obj_euler[2]))
obj_pose = (obj_pose[0], obj_quat)
world_to_pick = utils.invert(pick_pose)
obj_to_pick = utils.multiply(world_to_pick, obj_pose)
pick_to_obj = utils.invert(obj_to_pick)
if len(targ_pose) == 3 and (type(targ_pose[0]) is float or type(targ_pose[0]) is np.float32):
# add default orientation if missing
targ_pose = (targ_pose, (0,0,0,1))
place_pose = utils.multiply(targ_pose, pick_to_obj)
# Rotate end effector?
if not rotations:
place_pose = (place_pose[0], (0, 0, 0, 1))
place_pose = (np.asarray(place_pose[0]), np.asarray(place_pose[1]))
return {'pose0': pick_pose, 'pose1': place_pose}
return OracleAgent(act)
# -------------------------------------------------------------------------
# Reward Function and Task Completion Metrics
# -------------------------------------------------------------------------
def reward(self):
"""Get delta rewards for current timestep.
Returns:
A tuple consisting of the scalar (delta) reward.
"""
reward, info = 0, {}
# Unpack next goal step.
objs, matches, targs, replace, _, metric, params, max_reward = self.goals[0]
# Evaluate by matching object poses.
step_reward = 0
if metric == 'pose':
for i in range(len(objs)):
object_id, (symmetry, _) = objs[i]
pose = p.getBasePositionAndOrientation(object_id)
targets_i = np.argwhere(matches[i, :])
if len(targets_i) > 0:
targets_i = targets_i.reshape(-1)
for j in targets_i:
target_pose = targs[j]
if self.is_match(pose, target_pose, symmetry):
step_reward += max_reward / len(objs)
print(f"object {i} match with target {j} rew: {step_reward:.3f}")
break
# Evaluate by measuring object intersection with zone.
elif metric == 'zone':
zone_pts, total_pts = 0, 0
zones = params
if len(self.obj_points_cache) == 0 or objs[0][0] not in self.obj_points_cache:
for obj_id, _ in objs:
self.obj_points_cache[obj_id] = self.get_box_object_points(obj_id)
for zone_idx, (zone_pose, zone_size) in enumerate(zones):
# Count valid points in zone.
for (obj_id, _) in objs:
pts = self.obj_points_cache[obj_id]
obj_pose = p.getBasePositionAndOrientation(obj_id)
world_to_zone = utils.invert(zone_pose)
obj_to_zone = utils.multiply(world_to_zone, obj_pose)
pts = np.float32(utils.apply(obj_to_zone, pts))
# if type(zone_size) is int:
# print("closest point:", p.getClosestPoints(obj_id, zone_size, 0.1))
# valid_pts = len(p.getClosestPoints(obj_id, zone_size, 0.1)) > 0
if len(zone_size) > 1:
valid_pts = np.logical_and.reduce([
pts[0, :] > -zone_size[0] / 2, pts[0, :] < zone_size[0] / 2,
pts[1, :] > -zone_size[1] / 2, pts[1, :] < zone_size[1] / 2,
pts[2, :] < self.zone_bounds[2, 1]])
zone_pts += np.sum(np.float32(valid_pts))
total_pts += pts.shape[1]
if total_pts > 0:
step_reward = max_reward * (zone_pts / total_pts)
# Get cumulative rewards and return delta.
reward = self.progress + step_reward - self._rewards
self._rewards = self.progress + step_reward
# Move to next goal step if current goal step is complete.
if np.abs(max_reward - step_reward) < 0.01:
self.progress += max_reward # Update task progress.
self.goals.pop(0)
if len(self.lang_goals) > 0:
self.lang_goals.pop(0)
return reward, info
def done(self):
"""Check if the task is done or has failed.
Returns:
True if the episode should be considered a success.
"""
return (len(self.goals) == 0) or (self._rewards > 0.99)
# return zone_done or defs_done or goal_done
# -------------------------------------------------------------------------
# Environment Helper Functions
# -------------------------------------------------------------------------
def is_match(self, pose0, pose1, symmetry):
"""Check if pose0 and pose1 match within a threshold.
pose0 and pose1 should both be tuples of (translation, rotation).
Return true if the pose translation and orientation errors are below certain thresholds"""
if len(pose1) == 3 and (not hasattr(pose1[0], '__len__')):
# add default orientation if missing
pose1 = (pose1, (0,0,0,1))
# print(len(pose1) == 3, not hasattr(pose1[0], '__len__'))
# print(pose1, pose0)
# Get translational error.
diff_pos = np.float32(pose0[0][:2]) - np.float32(pose1[0][:2])
dist_pos = np.linalg.norm(diff_pos)
# Get rotational error around z-axis (account for symmetries).
diff_rot = 0
if symmetry > 0:
rot0 = np.array(utils.quatXYZW_to_eulerXYZ(pose0[1]))[2]
rot1 = np.array(utils.quatXYZW_to_eulerXYZ(pose1[1]))[2]
diff_rot = np.abs(rot0 - rot1) % symmetry
if diff_rot > (symmetry / 2):
diff_rot = symmetry - diff_rot
return (dist_pos < self.pos_eps) and (diff_rot < self.rot_eps)
def get_true_image(self, env):
"""Get RGB-D orthographic heightmaps and segmentation masks."""
# Capture near-orthographic RGB-D images and segmentation masks.
color, depth, segm = env.render_camera(self.oracle_cams[0])
# Combine color with masks for faster processing.
color = np.concatenate((color, segm[Ellipsis, None]), axis=2)
# Reconstruct real orthographic projection from point clouds.
hmaps, cmaps = utils.reconstruct_heightmaps(
[color], [depth], self.oracle_cams, self.bounds, self.pix_size)
# Split color back into color and masks.
cmap = np.uint8(cmaps)[0, Ellipsis, :3]
hmap = np.float32(hmaps)[0, Ellipsis]
mask = np.int32(cmaps)[0, Ellipsis, 3:].squeeze()
return cmap, hmap, mask
def get_random_pose(self, env, obj_size=0.1, **kwargs) -> (List, List):
"""
Get random collision-free object pose within workspace bounds.
:param obj_size: (3, ) contains the object size in x,y,z dimensions
return: translation (3, ), rotation (4, ) """
# Get erosion size of object in pixels.
max_size = np.sqrt(obj_size[0] ** 2 + obj_size[1] ** 2)
erode_size = int(np.round(max_size / self.pix_size))
_, hmap, obj_mask = self.get_true_image(env)
# Randomly sample an object pose within free-space pixels.
free = np.ones(obj_mask.shape, dtype=np.uint8)
for obj_ids in env.obj_ids.values():
for obj_id in obj_ids:
free[obj_mask == obj_id] = 0
free[0, :], free[:, 0], free[-1, :], free[:, -1] = 0, 0, 0, 0
free = cv2.erode(free, np.ones((erode_size, erode_size), np.uint8))
# if np.sum(free) == 0:
# return None, None
if np.sum(free) == 0:
# avoid returning None
pix = (obj_mask.shape[0] // 2, obj_mask.shape[1] // 2)
else:
pix = utils.sample_distribution(np.float32(free))
pos = utils.pix_to_xyz(pix, hmap, self.bounds, self.pix_size)
if len(obj_size) == 2:
print("Should have z dimension in obj_size as well.")
pos = [pos[0], pos[1], 0.05]
else:
pos = [pos[0], pos[1], obj_size[2] / 2]
theta = np.random.rand() * 2 * np.pi
rot = utils.eulerXYZ_to_quatXYZW((0, 0, theta))
return pos, rot
def get_lang_goal(self):
if len(self.lang_goals) == 0:
return self.task_completed_desc
else:
return self.lang_goals[0]
def get_reward(self):
return float(self._rewards)
def add_corner_anchor_for_pose(self, env, pose):
corner_template = 'corner/corner-template.urdf'
replace = {'DIMX': (0.04,), 'DIMY': (0.04,)}
# IMPORTANT: REPLACE THE TEMPLATE URDF
corner_urdf = self.fill_template(corner_template, replace)
if len(pose) != 2:
pose = [pose,(0,0,0,1)]
env.add_object(corner_urdf, pose, 'fixed')
def get_target_sample_surface_points(self, model, scale, pose, num_points=50):
import trimesh
mesh = trimesh.load_mesh(model)
points = trimesh.sample.volume_mesh(mesh, num_points * 3)
points = points[:num_points]
points = points * np.array(scale)
points = utils.apply(pose, points.T)
poses = [((x,y,z),(0,0,0,1)) for x, y, z in zip(points[0], points[1], points[2])]
return poses
# -------------------------------------------------------------------------
# Helper Functions
# -------------------------------------------------------------------------
def check_require_obj(self, path):
return os.path.exists(path.replace(".urdf", ".obj"))
def fill_template(self, template, replace):
"""Read a file and replace key strings.
NOTE: This function must be called if a URDF has template in its name """
full_template_path = os.path.join(self.assets_root, template)
if not os.path.exists(full_template_path) or (self.check_require_obj(full_template_path) and 'template' not in full_template_path):
return template
with open(full_template_path, 'r') as file:
fdata = file.read()
for field in replace:
# if not hasattr(replace[field], '__len__'):
# replace[field] = (replace[field], )
for i in range(len(replace[field])):
fdata = fdata.replace(f'{field}{i}', str(replace[field][i]))
if field == 'COLOR':
# handle gpt
pattern = r'<color rgba="(.*?)"/>'
code_string = re.findall(pattern, fdata)
if type(replace[field]) is str:
replace[field] = utils.COLORS[replace[field]]
for to_replace_color in code_string:
fdata = fdata.replace(f'{to_replace_color}', " ".join([str(x) for x in list(replace[field]) + [1]]))
alphabet = string.ascii_lowercase + string.digits
rname = ''.join(random.choices(alphabet, k=16))
tmpdir = tempfile.gettempdir()
template_filename = os.path.split(template)[-1]
fname = os.path.join(tmpdir, f'{template_filename}.{rname}')
with open(fname, 'w') as file:
file.write(fdata)
return fname
def get_random_size(self, min_x, max_x, min_y, max_y, min_z, max_z) -> Tuple:
"""Get random box size."""
size = np.random.rand(3)
size[0] = size[0] * (max_x - min_x) + min_x
size[1] = size[1] * (max_y - min_y) + min_y
size[2] = size[2] * (max_z - min_z) + min_z
return tuple(size)
def get_box_object_points(self, obj):
obj_shape = p.getVisualShapeData(obj)
obj_dim = obj_shape[0][3]
obj_dim = tuple(d for d in obj_dim)
xv, yv, zv = np.meshgrid(
np.arange(-obj_dim[0] / 2, obj_dim[0] / 2, 0.02),
np.arange(-obj_dim[1] / 2, obj_dim[1] / 2, 0.02),
np.arange(-obj_dim[2] / 2, obj_dim[2] / 2, 0.02),
sparse=False, indexing='xy')
return np.vstack((xv.reshape(1, -1), yv.reshape(1, -1), zv.reshape(1, -1)))
def get_sphere_object_points(self, obj):
return self.get_box_object_points(obj)
def get_mesh_object_points(self, obj):
mesh = p.getMeshData(obj)
mesh_points = np.array(mesh[1])
mesh_dim = np.vstack((mesh_points.min(axis=0), mesh_points.max(axis=0)))
xv, yv, zv = np.meshgrid(
np.arange(mesh_dim[0][0], mesh_dim[1][0], 0.02),
np.arange(mesh_dim[0][1], mesh_dim[1][1], 0.02),
np.arange(mesh_dim[0][2], mesh_dim[1][2], 0.02),
sparse=False, indexing='xy')
return np.vstack((xv.reshape(1, -1), yv.reshape(1, -1), zv.reshape(1, -1)))
def color_random_brown(self, obj):
shade = np.random.rand() + 0.5
color = np.float32([shade * 156, shade * 117, shade * 95, 255]) / 255
p.changeVisualShape(obj, -1, rgbaColor=color)
def set_assets_root(self, assets_root):
self.assets_root = assets_root
def zip_obj_ids(self, obj_ids, symmetries):
if type(obj_ids[0]) is tuple:
return obj_ids
if symmetries is None:
symmetries = [0.] * len(obj_ids)
objs = []
for obj_id, symmetry in zip(obj_ids, symmetries):
objs.append((obj_id, (symmetry, None)))
return objs
def add_goal(self, objs, matches, targ_poses, replace, rotations, metric, params, step_max_reward, symmetries=None, **kwargs):
""" Add the goal to the environment
- objs (List of Tuple [(obj_id, (float, None))] ): object ID, (the radians that the object is symmetric over, None). Do not pass in `(object id, object pose)` as the wrong tuple. or `object id` (such as `containers[i][0]`).
- matches (Binary Matrix): a binary matrix that denotes which object is matched with which target. This matrix has dimension len(objs) x len(targ_poses).
- targ_poses (List of Poses [(translation, rotation)] ): a list of target poses of tuple (translation, rotation). Don't pass in object IDs such as `bowls[i-1][0]` or `[stands[i][0]]`.
- replace (Boolean): whether each object can match with one unique target. This is important if we have one target and multiple objects. If it's set to be false, then any object matching with the target will satisfy.
- rotations (Boolean): whether the placement action has a rotation degree of freedom.
- metric (`pose` or `zone`): `pose` or `zone` that the object needs to be transported to. Example: `pose`.
- params ([(zone_target, zone_size)])): has to be [(zone_target, zone_size)] if the metric is `zone` where obj_pts is a dictionary that maps object ID to points.
- step_max_reward (float): the maximum reward of matching all the objects with all the target poses.
"""
objs = self.zip_obj_ids(objs, symmetries)
self.goals.append((objs, matches, targ_poses, replace, rotations,
metric, params, step_max_reward))
def make_piles(self, env, block_color=None, *args, **kwargs):
"""
add the piles objects for tasks involving piles
"""
obj_ids = []
for _ in range(self.num_blocks):
rx = self.bounds[0, 0] + 0.15 + np.random.rand() * 0.2
ry = self.bounds[1, 0] + 0.4 + np.random.rand() * 0.2
xyz = (rx, ry, 0.01)
theta = np.random.rand() * 2 * np.pi
xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, theta))
obj_id = env.add_object('block/small.urdf', (xyz, xyzw))
if block_color is not None:
p.changeVisualShape(obj_id, -1, rgbaColor=block_color + [1])
obj_ids.append(obj_id)
return obj_ids
def make_rope(self, *args, **kwargs):
return self.make_ropes(*args, **kwargs)
def make_ropes(self, env, corners, radius=0.005, n_parts = 20, color_name='red', *args, **kwargs):
""" add cables simulation for tasks that involve cables """
# Get corner points of square.
# radius = 0.005
length = 2 * radius * n_parts * np.sqrt(2)
corner0, corner1 = corners
# Add cable (series of articulated small blocks).
increment = (np.float32(corner1) - np.float32(corner0)) / n_parts
position, _ = self.get_random_pose(env, (0.1, 0.1, 0.1))
position = np.float32(position)
part_shape = p.createCollisionShape(p.GEOM_BOX, halfExtents=[radius] * 3)
part_visual = p.createVisualShape(p.GEOM_SPHERE, radius=radius * 1.5)
parent_id = -1
targets = []
objects = []
for i in range(n_parts):
position[2] += np.linalg.norm(increment)
part_id = p.createMultiBody(0.1, part_shape, part_visual,
basePosition=position)
if parent_id > -1:
constraint_id = p.createConstraint(
parentBodyUniqueId=parent_id,
parentLinkIndex=-1,
childBodyUniqueId=part_id,
childLinkIndex=-1,
jointType=p.JOINT_POINT2POINT,
jointAxis=(0, 0, 0),
parentFramePosition=(0, 0, np.linalg.norm(increment)),
childFramePosition=(0, 0, 0))
p.changeConstraint(constraint_id, maxForce=100)
if (i > 0) and (i < n_parts - 1):
color = utils.COLORS[color_name] + [1]
p.changeVisualShape(part_id, -1, rgbaColor=color)
env.obj_ids['rigid'].append(part_id)
parent_id = part_id
target_xyz = np.float32(corner0) + i * increment + increment / 2
objects.append((part_id, (0, None)))
targets.append((target_xyz, (0, 0, 0, 1)))
if hasattr(env, 'record_cfg') and 'blender_render' in env.record_cfg and env.record_cfg['blender_render']:
sphere_template = os.path.join(self.assets_root, 'sphere/sphere_rope.urdf')
env.blender_recorder.register_object(part_id, os.path.join(self.assets_root, 'sphere/sphere_rope.urdf'))
matches = np.clip(np.eye(n_parts) + np.eye(n_parts)[::-1], 0, 1)
return objects, targets, matches
def get_kitting_shapes(self, n_objects):
if self.mode == 'train':
obj_shapes = np.random.choice(self.train_set, n_objects)
else:
if self.homogeneous:
obj_shapes = [np.random.choice(self.test_set)] * n_objects
else:
obj_shapes = np.random.choice(self.test_set, n_objects)
return obj_shapes
def make_kitting_objects(self, env, targets, obj_shapes, n_objects, colors):
symmetry = [
2 * np.pi, 2 * np.pi, 2 * np.pi / 3, np.pi / 2, np.pi / 2, 2 * np.pi,
np.pi, 2 * np.pi / 5, np.pi, np.pi / 2, 2 * np.pi / 5, 0, 2 * np.pi,
2 * np.pi, 2 * np.pi, 2 * np.pi, 0, 2 * np.pi / 6, 2 * np.pi, 2 * np.pi
]
objects = []
matches = []
template = 'kitting/object-template.urdf'
for i in range(n_objects):
shape = obj_shapes[i]
size = (0.08, 0.08, 0.02)
pose = self.get_random_pose(env, size)
fname = f'{shape:02d}.obj'
fname = os.path.join(self.assets_root, 'kitting', fname)
scale = [0.003, 0.003, 0.001] # .0005
replace = {'FNAME': (fname,), 'SCALE': scale, 'COLOR': colors[i]}
# IMPORTANT: REPLACE THE TEMPLATE URDF
urdf = self.fill_template(template, replace)
block_id = env.add_object(urdf, pose)
objects.append((block_id, (symmetry[shape], None)))
match = np.zeros(len(targets))
match[np.argwhere(obj_shapes == shape).reshape(-1)] = 1
matches.append(match)
return objects, matches
def spawn_box(self):
"""Palletizing: spawn another box in the workspace if it is empty."""
workspace_empty = True
if self.goals:
for obj in self.goals[0][0]:
obj_pose = p.getBasePositionAndOrientation(obj[0])
workspace_empty = workspace_empty and ((obj_pose[0][1] < -0.5) or
(obj_pose[0][1] > 0))
if not self.steps:
self.goals = []
print('Palletized boxes toppled. Terminating episode.')
return
if workspace_empty:
obj = self.steps[0]
theta = np.random.random() * 2 * np.pi
rotation = utils.eulerXYZ_to_quatXYZW((0, 0, theta))
p.resetBasePositionAndOrientation(obj, [0.5, -0.25, 0.1], rotation)
self.steps.pop(0)
# Wait until spawned box settles.
for _ in range(480):
p.stepSimulation()
def get_asset_full_path(self, path):
return path |