File size: 27,501 Bytes
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
"""Base Task class."""

import collections
import os
import random
import string
import tempfile

import cv2
import numpy as np
from cliport.tasks import cameras
from cliport.tasks import primitives
from cliport.tasks.grippers import Suction
from cliport.utils import utils
from cliport.tasks import primitives
from cliport.tasks.grippers import Spatula
import pybullet as p
from typing import Tuple, List
import re

class Task():
    """Base Task class."""

    def __init__(self):
        self.ee = Suction
        self.mode = 'train'
        self.sixdof = False
        self.primitive = primitives.PickPlace()
        self.oracle_cams = cameras.Oracle.CONFIG

        # Evaluation epsilons (for pose evaluation metric).
        self.pos_eps = 0.01
        self.rot_eps = np.deg2rad(15)

        # for piles
        self.num_blocks = 50

        # Workspace bounds.
        self.pix_size = 0.003125
        self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.3]])
        self.zone_bounds = np.copy(self.bounds)

        self.goals = []
        self.lang_goals = []
        self.obj_points_cache = {}

        self.task_completed_desc = "task completed."
        self.progress = 0
        self._rewards = 0

        self.train_set = np.arange(0, 14)
        self.test_set = np.arange(14, 20)
        self.assets_root = None
        self.homogeneous = False

    def reset(self, env):
        if not self.assets_root:
            raise ValueError('assets_root must be set for task, '
                             'call set_assets_root().')
        self.goals = []
        self.lang_goals = []
        self.progress = 0  # Task progression metric in range [0, 1].
        self._rewards = 0  # Cumulative returned rewards.
        self.obj_points_cache = {}

    def additional_reset(self):
        # Additional changes to make the environment adaptable
        if 'bowl' in self.lang_template:
            # IMPORTANT: increase position tolerance for bowl placement
            self.pos_eps = 0.05

        if 'piles' in self.lang_template:
            # IMPORTANT: Define the primitive to be push and ee to be spatula for tasks involving piles
            self.ee = Spatula
            self.primitive = primitives.push

        if 'rope' in self.lang_template:
            self.primitive = primitives.PickPlace(height=0.02, speed=0.001)
            self.pos_eps = 0.02

    # -------------------------------------------------------------------------
    # Oracle Agent
    # -------------------------------------------------------------------------

    def oracle(self, env):
        """Oracle agent."""
        OracleAgent = collections.namedtuple('OracleAgent', ['act'])

        def act(obs, info):
            """Calculate action."""

            # Oracle uses perfect RGB-D orthographic images and segmentation masks.
            _, hmap, obj_mask = self.get_true_image(env)

            # Unpack next goal step.
            objs, matches, targs, replace, rotations, _, _, _ = self.goals[0]

            for j, targ in enumerate(targs):
                # add default orientation if missing
                if len(targ) == 3 and (type(targs[j][0]) is float or type(targs[j][0]) is np.float32):
                    targs[j] = (targs[j], (0,0,0,1))

            # Match objects to targets without replacement.
            if not replace:

                # Modify a copy of the match matrix.
                matches = matches.copy()

                # Ignore already matched objects.
                for i in range(len(objs)):
                    if type(objs[i]) is int:
                        objs[i] = (objs[i], (False, None))

                    object_id, (symmetry, _) = objs[i]
                    pose = p.getBasePositionAndOrientation(object_id)
                    targets_i = np.argwhere(matches[i, :]).reshape(-1)
                    for j in targets_i:
                        if self.is_match(pose, targs[j], symmetry):
                            matches[i, :] = 0
                            matches[:, j] = 0

            # Get objects to be picked (prioritize farthest from nearest neighbor).
            nn_dists = []
            nn_targets = []
            for i in range(len(objs)):
                if type(objs[i]) is int:
                    objs[i] = (objs[i], (False, None))

                object_id, (symmetry, _) = objs[i]
                xyz, _ = p.getBasePositionAndOrientation(object_id)
                targets_i = np.argwhere(matches[i, :]).reshape(-1)
                if len(targets_i) > 0:

                    targets_xyz = np.float32([targs[j][0] for j in targets_i])
                    dists = np.linalg.norm(
                        targets_xyz - np.float32(xyz).reshape(1, 3), axis=1)
                    nn = np.argmin(dists)
                    nn_dists.append(dists[nn])
                    nn_targets.append(targets_i[nn])

                # Handle ignored objects.
                else:
                    nn_dists.append(0)
                    nn_targets.append(-1)
            order = np.argsort(nn_dists)[::-1]

            # Filter out matched objects.
            order = [i for i in order if nn_dists[i] > 0]

            pick_mask = None
            for pick_i in order:
                pick_mask = np.uint8(obj_mask == objs[pick_i][0])

                # Erode to avoid picking on edges.
                pick_mask = cv2.erode(pick_mask, np.ones((3, 3), np.uint8))

                if np.sum(pick_mask) > 0:
                    break

            # Trigger task reset if no object is visible.
            if pick_mask is None or np.sum(pick_mask) == 0:
                self.goals = []
                self.lang_goals = []
                print('Object for pick is not visible. Skipping demonstration.')
                return

            # Get picking pose.
            pick_prob = np.float32(pick_mask)
            pick_pix = utils.sample_distribution(pick_prob)
            # For "deterministic" demonstrations on insertion-easy, use this:
            pick_pos = utils.pix_to_xyz(pick_pix, hmap,
                                        self.bounds, self.pix_size)
            pick_pose = (np.asarray(pick_pos), np.asarray((0, 0, 0, 1)))

            # Get placing pose.
            targ_pose = targs[nn_targets[pick_i]]
            obj_pose = p.getBasePositionAndOrientation(objs[pick_i][0])
            if not self.sixdof:
                obj_euler = utils.quatXYZW_to_eulerXYZ(obj_pose[1])
                obj_quat = utils.eulerXYZ_to_quatXYZW((0, 0, obj_euler[2]))
                obj_pose = (obj_pose[0], obj_quat)
            world_to_pick = utils.invert(pick_pose)
            obj_to_pick = utils.multiply(world_to_pick, obj_pose)
            pick_to_obj = utils.invert(obj_to_pick)

            if len(targ_pose) == 3 and (type(targ_pose[0]) is float or type(targ_pose[0]) is np.float32):
                # add default orientation if missing
                targ_pose = (targ_pose, (0,0,0,1))

            place_pose = utils.multiply(targ_pose, pick_to_obj)

            # Rotate end effector?
            if not rotations:
                place_pose = (place_pose[0], (0, 0, 0, 1))

            place_pose = (np.asarray(place_pose[0]), np.asarray(place_pose[1]))

            return {'pose0': pick_pose, 'pose1': place_pose}

        return OracleAgent(act)

    # -------------------------------------------------------------------------
    # Reward Function and Task Completion Metrics
    # -------------------------------------------------------------------------

    def reward(self):
        """Get delta rewards for current timestep.

        Returns:
          A tuple consisting of the scalar (delta) reward.
        """
        reward, info = 0, {}

        # Unpack next goal step.
        objs, matches, targs, replace, _, metric, params, max_reward = self.goals[0]

        # Evaluate by matching object poses.
        step_reward = 0

        if metric == 'pose':
            for i in range(len(objs)):
                object_id, (symmetry, _) = objs[i]
                pose = p.getBasePositionAndOrientation(object_id)
                targets_i = np.argwhere(matches[i, :])
                if len(targets_i) > 0:
                    targets_i = targets_i.reshape(-1)
                    for j in targets_i:
                        target_pose = targs[j]
                        if self.is_match(pose, target_pose, symmetry):
                            step_reward += max_reward / len(objs)
                            print(f"object {i} match with target {j} rew: {step_reward:.3f}")
                            break

        # Evaluate by measuring object intersection with zone.
        elif metric == 'zone':
            zone_pts, total_pts = 0, 0
            zones = params

            if len(self.obj_points_cache) == 0 or objs[0][0] not in self.obj_points_cache:
                for obj_id, _ in objs:
                    self.obj_points_cache[obj_id] = self.get_box_object_points(obj_id)

            for zone_idx, (zone_pose, zone_size) in enumerate(zones):
                # Count valid points in zone.
                for (obj_id, _) in objs:
                    pts = self.obj_points_cache[obj_id]
                    obj_pose = p.getBasePositionAndOrientation(obj_id)
                    world_to_zone = utils.invert(zone_pose)
                    obj_to_zone = utils.multiply(world_to_zone, obj_pose)
                    pts = np.float32(utils.apply(obj_to_zone, pts))
                    # if type(zone_size) is int:
                    #      print("closest point:", p.getClosestPoints(obj_id, zone_size, 0.1))
                    #     valid_pts = len(p.getClosestPoints(obj_id, zone_size, 0.1)) > 0

                    if len(zone_size) > 1:
                        valid_pts = np.logical_and.reduce([
                            pts[0, :] > -zone_size[0] / 2, pts[0, :] < zone_size[0] / 2,
                            pts[1, :] > -zone_size[1] / 2, pts[1, :] < zone_size[1] / 2,
                            pts[2, :] < self.zone_bounds[2, 1]])

                    zone_pts += np.sum(np.float32(valid_pts))
                    total_pts += pts.shape[1]

            if total_pts > 0:
                step_reward = max_reward * (zone_pts / total_pts)

        # Get cumulative rewards and return delta.
        reward = self.progress + step_reward - self._rewards
        self._rewards = self.progress + step_reward

        # Move to next goal step if current goal step is complete.
        if np.abs(max_reward - step_reward) < 0.01:
            self.progress += max_reward  # Update task progress.
            self.goals.pop(0)
            if len(self.lang_goals) > 0:
                self.lang_goals.pop(0)

        return reward, info

    def done(self):
        """Check if the task is done or has failed.

        Returns:
          True if the episode should be considered a success.
        """
        return (len(self.goals) == 0) or (self._rewards > 0.99)
        # return zone_done or defs_done or goal_done

    # -------------------------------------------------------------------------
    # Environment Helper Functions
    # -------------------------------------------------------------------------

    def is_match(self, pose0, pose1, symmetry):
        """Check if pose0 and pose1 match within a threshold.
        pose0 and pose1 should both be tuples of (translation, rotation).
        Return true if the pose translation and orientation errors are below certain thresholds"""
        if len(pose1) == 3 and (not hasattr(pose1[0], '__len__')):
            # add default orientation if missing
            pose1 = (pose1, (0,0,0,1))
        # print(len(pose1) == 3, not hasattr(pose1[0], '__len__'))
        # print(pose1, pose0)
        # Get translational error.
        diff_pos = np.float32(pose0[0][:2]) - np.float32(pose1[0][:2])
        dist_pos = np.linalg.norm(diff_pos)

        # Get rotational error around z-axis (account for symmetries).
        diff_rot = 0
        if symmetry > 0:
            rot0 = np.array(utils.quatXYZW_to_eulerXYZ(pose0[1]))[2]
            rot1 = np.array(utils.quatXYZW_to_eulerXYZ(pose1[1]))[2]
            diff_rot = np.abs(rot0 - rot1) % symmetry
            if diff_rot > (symmetry / 2):
                diff_rot = symmetry - diff_rot

        return (dist_pos < self.pos_eps) and (diff_rot < self.rot_eps)

    def get_true_image(self, env):
        """Get RGB-D orthographic heightmaps and segmentation masks."""

        # Capture near-orthographic RGB-D images and segmentation masks.
        color, depth, segm = env.render_camera(self.oracle_cams[0])

        # Combine color with masks for faster processing.
        color = np.concatenate((color, segm[Ellipsis, None]), axis=2)

        # Reconstruct real orthographic projection from point clouds.
        hmaps, cmaps = utils.reconstruct_heightmaps(
            [color], [depth], self.oracle_cams, self.bounds, self.pix_size)

        # Split color back into color and masks.
        cmap = np.uint8(cmaps)[0, Ellipsis, :3]
        hmap = np.float32(hmaps)[0, Ellipsis]
        mask = np.int32(cmaps)[0, Ellipsis, 3:].squeeze()
        return cmap, hmap, mask

    def get_random_pose(self, env, obj_size=0.1, **kwargs) -> (List, List):
        """
        Get random collision-free object pose within workspace bounds.
        :param obj_size: (3, ) contains the object size in x,y,z dimensions
        return: translation (3, ), rotation (4, ) """

        # Get erosion size of object in pixels.
        max_size = np.sqrt(obj_size[0] ** 2 + obj_size[1] ** 2)
        erode_size = int(np.round(max_size / self.pix_size))

        _, hmap, obj_mask = self.get_true_image(env)

        # Randomly sample an object pose within free-space pixels.
        free = np.ones(obj_mask.shape, dtype=np.uint8)
        for obj_ids in env.obj_ids.values():
            for obj_id in obj_ids:
                free[obj_mask == obj_id] = 0
        free[0, :], free[:, 0], free[-1, :], free[:, -1] = 0, 0, 0, 0
        free = cv2.erode(free, np.ones((erode_size, erode_size), np.uint8))

        # if np.sum(free) == 0:
        #     return None, None

        if np.sum(free) == 0:
            # avoid returning None
            pix = (obj_mask.shape[0] // 2, obj_mask.shape[1] // 2)
        else:
            pix = utils.sample_distribution(np.float32(free))
        pos = utils.pix_to_xyz(pix, hmap, self.bounds, self.pix_size)

        if len(obj_size) == 2:
            print("Should have z dimension in obj_size as well.")
            pos = [pos[0], pos[1], 0.05]
        else:
            pos = [pos[0], pos[1], obj_size[2] / 2]
        theta = np.random.rand() * 2 * np.pi
        rot = utils.eulerXYZ_to_quatXYZW((0, 0, theta))
        return pos, rot

    def get_lang_goal(self):
        if len(self.lang_goals) == 0:
            return self.task_completed_desc
        else:
            return self.lang_goals[0]

    def get_reward(self):
        return float(self._rewards)
    
    def add_corner_anchor_for_pose(self, env, pose):
        corner_template = 'corner/corner-template.urdf'
        replace = {'DIMX': (0.04,), 'DIMY': (0.04,)}

        # IMPORTANT: REPLACE THE TEMPLATE URDF
        corner_urdf = self.fill_template(corner_template, replace)
        if len(pose) != 2:
            pose = [pose,(0,0,0,1)]
        env.add_object(corner_urdf, pose, 'fixed')


    def get_target_sample_surface_points(self, model, scale, pose, num_points=50):
        import trimesh
        mesh = trimesh.load_mesh(model)
        points = trimesh.sample.volume_mesh(mesh, num_points * 3)
        points = points[:num_points]
        points = points * np.array(scale)
        points = utils.apply(pose, points.T)
        poses = [((x,y,z),(0,0,0,1)) for x, y, z in zip(points[0], points[1], points[2])]
        return poses
    # -------------------------------------------------------------------------
    # Helper Functions
    # -------------------------------------------------------------------------
    def check_require_obj(self, path):
        return os.path.exists(path.replace(".urdf", ".obj"))

    def fill_template(self, template, replace):
        """Read a file and replace key strings.
        NOTE: This function must be called if a URDF has template in its name """

        full_template_path = os.path.join(self.assets_root, template)
        if not os.path.exists(full_template_path) or (self.check_require_obj(full_template_path) and 'template' not in full_template_path):
            return template

        with open(full_template_path, 'r') as file:
            fdata = file.read()

        for field in replace:
            # if  not hasattr(replace[field], '__len__'):
            #     replace[field] = (replace[field], )

            for i in range(len(replace[field])):
                fdata = fdata.replace(f'{field}{i}', str(replace[field][i]))

            if field == 'COLOR':
                # handle gpt
                pattern = r'<color rgba="(.*?)"/>'
                code_string = re.findall(pattern, fdata)
                if type(replace[field]) is str:
                    replace[field] = utils.COLORS[replace[field]]
                for to_replace_color in  code_string:
                    fdata = fdata.replace(f'{to_replace_color}', " ".join([str(x) for x in list(replace[field]) + [1]]))
            
        alphabet = string.ascii_lowercase + string.digits
        rname = ''.join(random.choices(alphabet, k=16))
        tmpdir = tempfile.gettempdir()
        template_filename = os.path.split(template)[-1]
        fname = os.path.join(tmpdir, f'{template_filename}.{rname}')
        with open(fname, 'w') as file:
            file.write(fdata)
        return fname

    def get_random_size(self, min_x, max_x, min_y, max_y, min_z, max_z) -> Tuple:
        """Get random box size."""
        size = np.random.rand(3)
        size[0] = size[0] * (max_x - min_x) + min_x
        size[1] = size[1] * (max_y - min_y) + min_y
        size[2] = size[2] * (max_z - min_z) + min_z
        return tuple(size)

    def get_box_object_points(self, obj):
        obj_shape = p.getVisualShapeData(obj)
        obj_dim = obj_shape[0][3]
        obj_dim = tuple(d for d in obj_dim)
        xv, yv, zv = np.meshgrid(
            np.arange(-obj_dim[0] / 2, obj_dim[0] / 2, 0.02),
            np.arange(-obj_dim[1] / 2, obj_dim[1] / 2, 0.02),
            np.arange(-obj_dim[2] / 2, obj_dim[2] / 2, 0.02),
            sparse=False, indexing='xy')
        return np.vstack((xv.reshape(1, -1), yv.reshape(1, -1), zv.reshape(1, -1)))

    def get_sphere_object_points(self, obj):
        return self.get_box_object_points(obj)

    def get_mesh_object_points(self, obj):
        mesh = p.getMeshData(obj)
        mesh_points = np.array(mesh[1])
        mesh_dim = np.vstack((mesh_points.min(axis=0), mesh_points.max(axis=0)))
        xv, yv, zv = np.meshgrid(
            np.arange(mesh_dim[0][0], mesh_dim[1][0], 0.02),
            np.arange(mesh_dim[0][1], mesh_dim[1][1], 0.02),
            np.arange(mesh_dim[0][2], mesh_dim[1][2], 0.02),
            sparse=False, indexing='xy')
        return np.vstack((xv.reshape(1, -1), yv.reshape(1, -1), zv.reshape(1, -1)))

    def color_random_brown(self, obj):
        shade = np.random.rand() + 0.5
        color = np.float32([shade * 156, shade * 117, shade * 95, 255]) / 255
        p.changeVisualShape(obj, -1, rgbaColor=color)

    def set_assets_root(self, assets_root):
        self.assets_root = assets_root

    def zip_obj_ids(self, obj_ids, symmetries):
        if type(obj_ids[0]) is tuple:
            return obj_ids

        if  symmetries is None:
             symmetries = [0.] * len(obj_ids)
        objs = []

        for obj_id, symmetry in zip(obj_ids, symmetries):
            objs.append((obj_id, (symmetry, None)))
        return objs

    def add_goal(self, objs, matches, targ_poses, replace, rotations, metric, params, step_max_reward, symmetries=None, **kwargs):
        """ Add the goal to the environment
        - objs (List of Tuple [(obj_id, (float, None))] ): object ID, (the radians that the object is symmetric over, None). Do not pass in `(object id, object pose)` as the wrong tuple. or `object id` (such as `containers[i][0]`).
        - matches (Binary Matrix): a binary matrix that denotes which object is matched with which target. This matrix has dimension len(objs) x len(targ_poses).
        - targ_poses (List of Poses [(translation, rotation)] ): a list of target poses of tuple (translation, rotation). Don't pass in object IDs such as `bowls[i-1][0]` or  `[stands[i][0]]`.
        - replace (Boolean): whether each object can match with one unique target.   This is important if we have one target and multiple objects. If it's set to be false, then any object matching with the target will satisfy.
        - rotations (Boolean): whether the placement action has a rotation degree of freedom.
        - metric (`pose` or `zone`): `pose` or `zone` that the object needs to be transported to. Example: `pose`.
        - params ([(zone_target, zone_size)])): has to be [(zone_target, zone_size)] if the metric is `zone` where obj_pts is a dictionary that maps object ID to points.
        - step_max_reward (float): the maximum reward of matching all the objects with all the target poses.
        """
        objs = self.zip_obj_ids(objs, symmetries)
        self.goals.append((objs, matches, targ_poses, replace, rotations,
                           metric, params, step_max_reward))


    def make_piles(self, env, block_color=None, *args, **kwargs):
        """
        add the piles objects for tasks involving piles
        """
        obj_ids = []
        for _ in range(self.num_blocks):
            rx = self.bounds[0, 0] + 0.15 + np.random.rand() * 0.2
            ry = self.bounds[1, 0] + 0.4 + np.random.rand() * 0.2
            xyz = (rx, ry, 0.01)
            theta = np.random.rand() * 2 * np.pi
            xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, theta))
            obj_id = env.add_object('block/small.urdf', (xyz, xyzw))
            if block_color is not None:
                p.changeVisualShape(obj_id, -1, rgbaColor=block_color + [1])

            obj_ids.append(obj_id)
        return obj_ids

    def make_rope(self, *args, **kwargs):
        return self.make_ropes(*args, **kwargs)

    def make_ropes(self, env, corners, radius=0.005, n_parts = 20, color_name='red', *args, **kwargs):
        """ add cables simulation for tasks that involve cables """
        # Get corner points of square.
        
        # radius = 0.005
        length = 2 * radius * n_parts * np.sqrt(2)
        corner0, corner1 = corners
        # Add cable (series of articulated small blocks).
        increment = (np.float32(corner1) - np.float32(corner0)) / n_parts
        position, _ = self.get_random_pose(env, (0.1, 0.1, 0.1))
        position = np.float32(position)
        part_shape = p.createCollisionShape(p.GEOM_BOX, halfExtents=[radius] * 3)
        part_visual = p.createVisualShape(p.GEOM_SPHERE, radius=radius * 1.5)
        parent_id = -1
        targets = []
        objects = []

        for i in range(n_parts):
            position[2] += np.linalg.norm(increment)
            part_id = p.createMultiBody(0.1, part_shape, part_visual,
                                        basePosition=position)
            if parent_id > -1:
                constraint_id = p.createConstraint(
                    parentBodyUniqueId=parent_id,
                    parentLinkIndex=-1,
                    childBodyUniqueId=part_id,
                    childLinkIndex=-1,
                    jointType=p.JOINT_POINT2POINT,
                    jointAxis=(0, 0, 0),
                    parentFramePosition=(0, 0, np.linalg.norm(increment)),
                    childFramePosition=(0, 0, 0))
                p.changeConstraint(constraint_id, maxForce=100)

            if (i > 0) and (i < n_parts - 1):
                color = utils.COLORS[color_name] + [1]
                p.changeVisualShape(part_id, -1, rgbaColor=color)

            env.obj_ids['rigid'].append(part_id)
            parent_id = part_id
            target_xyz = np.float32(corner0) + i * increment + increment / 2
            objects.append((part_id, (0, None)))
            targets.append((target_xyz, (0, 0, 0, 1)))

            if  hasattr(env, 'record_cfg') and 'blender_render' in env.record_cfg and env.record_cfg['blender_render']:
                sphere_template = os.path.join(self.assets_root, 'sphere/sphere_rope.urdf')
                env.blender_recorder.register_object(part_id, os.path.join(self.assets_root, 'sphere/sphere_rope.urdf'))


        matches = np.clip(np.eye(n_parts) + np.eye(n_parts)[::-1], 0, 1)
        return objects, targets, matches


    def get_kitting_shapes(self, n_objects):
        if self.mode == 'train':
            obj_shapes = np.random.choice(self.train_set, n_objects)
        else:
            if self.homogeneous:
                obj_shapes = [np.random.choice(self.test_set)] * n_objects
            else:
                obj_shapes = np.random.choice(self.test_set, n_objects)

        return obj_shapes


    def make_kitting_objects(self, env, targets, obj_shapes, n_objects, colors):
        symmetry = [
            2 * np.pi, 2 * np.pi, 2 * np.pi / 3, np.pi / 2, np.pi / 2, 2 * np.pi,
            np.pi, 2 * np.pi / 5, np.pi, np.pi / 2, 2 * np.pi / 5, 0, 2 * np.pi,
            2 * np.pi, 2 * np.pi, 2 * np.pi, 0, 2 * np.pi / 6, 2 * np.pi, 2 * np.pi
        ]
        objects = []
        matches = []
        template = 'kitting/object-template.urdf'

        for i in range(n_objects):
            shape = obj_shapes[i]
            size = (0.08, 0.08, 0.02)
            pose = self.get_random_pose(env, size)
            fname = f'{shape:02d}.obj'
            fname = os.path.join(self.assets_root, 'kitting', fname)
            scale = [0.003, 0.003, 0.001]  # .0005
            replace = {'FNAME': (fname,), 'SCALE': scale, 'COLOR': colors[i]}

            # IMPORTANT: REPLACE THE TEMPLATE URDF
            urdf = self.fill_template(template, replace)
            block_id = env.add_object(urdf, pose)
            objects.append((block_id, (symmetry[shape], None)))
            match = np.zeros(len(targets))
            match[np.argwhere(obj_shapes == shape).reshape(-1)] = 1
            matches.append(match)
        return objects, matches

    def spawn_box(self):
        """Palletizing: spawn another box in the workspace if it is empty."""
        workspace_empty = True
        if self.goals:
            for obj in self.goals[0][0]:
                obj_pose = p.getBasePositionAndOrientation(obj[0])
                workspace_empty = workspace_empty and ((obj_pose[0][1] < -0.5) or
                                                       (obj_pose[0][1] > 0))
            if not self.steps:
                self.goals = []
                print('Palletized boxes toppled. Terminating episode.')
                return

            if workspace_empty:
                obj = self.steps[0]
                theta = np.random.random() * 2 * np.pi
                rotation = utils.eulerXYZ_to_quatXYZW((0, 0, theta))
                p.resetBasePositionAndOrientation(obj, [0.5, -0.25, 0.1], rotation)
                self.steps.pop(0)

        # Wait until spawned box settles.
        for _ in range(480):
            p.stepSimulation()

    def get_asset_full_path(self, path):
        return path