Spaces:
Runtime error
Runtime error
File size: 24,863 Bytes
8fc2b4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
"""Environment class."""
import os
import tempfile
import time
import cv2
import imageio
import gym
import numpy as np
from cliport.tasks import cameras
from cliport.utils import pybullet_utils
from cliport.utils import utils
import string
import pybullet as p
import tempfile
import random
import sys
PLACE_STEP = 0.0003
PLACE_DELTA_THRESHOLD = 0.005
UR5_URDF_PATH = 'ur5/ur5.urdf'
UR5_WORKSPACE_URDF_PATH = 'ur5/workspace.urdf'
PLANE_URDF_PATH = 'plane/plane.urdf'
class Environment(gym.Env):
"""OpenAI Gym-style environment class."""
def __init__(self,
assets_root,
task=None,
disp=False,
shared_memory=False,
hz=240,
record_cfg=None):
"""Creates OpenAI Gym-style environment with PyBullet.
Args:
assets_root: root directory of assets.
task: the task to use. If None, the user must call set_task for the
environment to work properly.
disp: show environment with PyBullet's built-in display viewer.
shared_memory: run with shared memory.
hz: PyBullet physics simulation step speed. Set to 480 for deformables.
Raises:
RuntimeError: if pybullet cannot load fileIOPlugin.
"""
self.pix_size = 0.003125
self.obj_ids = {'fixed': [], 'rigid': [], 'deformable': []}
self.objects = self.obj_ids # make a copy
self.homej = np.array([-1, -0.5, 0.5, -0.5, -0.5, 0]) * np.pi
self.agent_cams = cameras.RealSenseD415.CONFIG
self.record_cfg = record_cfg
self.save_video = False
self.step_counter = 0
self.assets_root = assets_root
color_tuple = [
gym.spaces.Box(0, 255, config['image_size'] + (3,), dtype=np.uint8)
for config in self.agent_cams
]
depth_tuple = [
gym.spaces.Box(0.0, 20.0, config['image_size'], dtype=np.float32)
for config in self.agent_cams
]
self.observation_space = gym.spaces.Dict({
'color': gym.spaces.Tuple(color_tuple),
'depth': gym.spaces.Tuple(depth_tuple),
})
self.position_bounds = gym.spaces.Box(
low=np.array([0.25, -0.5, 0.], dtype=np.float32),
high=np.array([0.75, 0.5, 0.28], dtype=np.float32),
shape=(3,),
dtype=np.float32)
self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.3]])
self.action_space = gym.spaces.Dict({
'pose0':
gym.spaces.Tuple(
(self.position_bounds,
gym.spaces.Box(-1.0, 1.0, shape=(4,), dtype=np.float32))),
'pose1':
gym.spaces.Tuple(
(self.position_bounds,
gym.spaces.Box(-1.0, 1.0, shape=(4,), dtype=np.float32)))
})
# Start PyBullet.
disp_option = p.DIRECT
if disp:
disp_option = p.GUI
if shared_memory:
disp_option = p.SHARED_MEMORY
client = p.connect(disp_option)
file_io = p.loadPlugin('fileIOPlugin', physicsClientId=client)
if file_io < 0:
raise RuntimeError('pybullet: cannot load FileIO!')
if file_io >= 0:
p.executePluginCommand(
file_io,
textArgument=assets_root,
intArgs=[p.AddFileIOAction],
physicsClientId=client)
p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0)
p.setPhysicsEngineParameter(enableFileCaching=0)
p.setAdditionalSearchPath(assets_root)
p.setAdditionalSearchPath(tempfile.gettempdir())
p.setTimeStep(1. / hz)
# If using --disp, move default camera closer to the scene.
if disp:
target = p.getDebugVisualizerCamera()[11]
p.resetDebugVisualizerCamera(
cameraDistance=1.1,
cameraYaw=90,
cameraPitch=-25,
cameraTargetPosition=target)
if task:
self.set_task(task)
def __del__(self):
if hasattr(self, 'video_writer'):
self.curr_video = []
self.video_writer.close()
@property
def is_static(self):
"""Return true if objects are no longer moving."""
v = [np.linalg.norm(p.getBaseVelocity(i)[0])
for i in self.obj_ids['rigid']]
return all(np.array(v) < 5e-3)
def fill_dummy_template(self, template):
"""check if there are empty templates that haven't been fulfilled yet. if so. fill in dummy numbers """
full_template_path = os.path.join(self.assets_root, template)
with open(full_template_path, 'r') as file:
fdata = file.read()
fill = False
for field in ['DIMH', 'DIMR', 'DIMX', 'DIMY', 'DIMZ', 'DIM']:
# usually 3 should be enough
if field in fdata:
default_replace_vals = np.random.uniform(0.03, 0.05, size=(3,)).tolist() # [0.03,0.03,0.03]
for i in range(len(default_replace_vals)):
fdata = fdata.replace(f'{field}{i}', str(default_replace_vals[i]))
fill = True
for field in ['HALF']:
# usually 3 should be enough
if field in fdata:
default_replace_vals = np.random.uniform(0.01, 0.03, size=(3,)).tolist() # [0.015,0.015,0.015]
for i in range(len(default_replace_vals)):
fdata = fdata.replace(f'{field}{i}', str(default_replace_vals[i]))
fill = True
if fill:
alphabet = string.ascii_lowercase + string.digits
rname = ''.join(random.choices(alphabet, k=16))
tmpdir = tempfile.gettempdir()
template_filename = os.path.split(template)[-1]
fname = os.path.join(tmpdir, f'{template_filename}.{rname}')
with open(fname, 'w') as file:
file.write(fdata)
# print("fill-in dummys")
return fname
else:
return template
def add_object(self, urdf, pose, category='rigid', color=None, **kwargs):
"""List of (fixed, rigid, or deformable) objects in env."""
fixed_base = 1 if category == 'fixed' else 0
if 'template' in urdf:
if not os.path.exists(os.path.join(self.assets_root, urdf)):
urdf = urdf.replace("-template", "")
urdf = self.fill_dummy_template(urdf)
if not os.path.exists(os.path.join(self.assets_root, urdf)):
print(f"missing urdf error: {os.path.join(self.assets_root, urdf)}. use dummy block.")
urdf = 'stacking/block.urdf'
obj_id = pybullet_utils.load_urdf(
p,
os.path.join(self.assets_root, urdf),
pose[0],
pose[1],
useFixedBase=fixed_base)
if not obj_id is None:
self.obj_ids[category].append(obj_id)
if color is not None:
if type(color) is str:
color = utils.COLORS[color]
color = color + [1.]
p.changeVisualShape(obj_id, -1, rgbaColor=color)
if hasattr(self, 'record_cfg') and 'blender_render' in self.record_cfg and self.record_cfg['blender_render']:
# print("urdf:", os.path.join(self.assets_root, urdf))
self.blender_recorder.register_object(obj_id, os.path.join(self.assets_root, urdf), color=color)
return obj_id
def set_color(self, obj_id, color):
p.changeVisualShape(obj_id, -1, rgbaColor=color + [1])
def set_object_color(self, *args, **kwargs):
return self.set_color(*args, **kwargs)
# ---------------------------------------------------------------------------
# Standard Gym Functions
# ---------------------------------------------------------------------------
def seed(self, seed=None):
self._random = np.random.RandomState(seed)
return seed
def reset(self):
"""Performs common reset functionality for all supported tasks."""
if not self.task:
raise ValueError('environment task must be set. Call set_task or pass '
'the task arg in the environment constructor.')
self.obj_ids = {'fixed': [], 'rigid': [], 'deformable': []}
p.resetSimulation(p.RESET_USE_DEFORMABLE_WORLD)
p.setGravity(0, 0, -9.8)
# Temporarily disable rendering to load scene faster.
p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 0)
plane = pybullet_utils.load_urdf(p, os.path.join(self.assets_root, PLANE_URDF_PATH),
[0, 0, -0.001])
workspace = pybullet_utils.load_urdf(
p, os.path.join(self.assets_root, UR5_WORKSPACE_URDF_PATH), [0.5, 0, 0])
# Load UR5 robot arm equipped with suction end effector.
# TODO(andyzeng): add back parallel-jaw grippers.
self.ur5 = pybullet_utils.load_urdf(
p, os.path.join(self.assets_root, UR5_URDF_PATH))
self.ee = self.task.ee(self.assets_root, self.ur5, 9, self.obj_ids)
self.ee_tip = 10 # Link ID of suction cup.
if hasattr(self, 'record_cfg') and 'blender_render' in self.record_cfg and self.record_cfg['blender_render']:
from misc.pyBulletSimRecorder import PyBulletRecorder
self.blender_recorder = PyBulletRecorder()
self.blender_recorder.register_object(plane, os.path.join(self.assets_root, PLANE_URDF_PATH))
self.blender_recorder.register_object(workspace, os.path.join(self.assets_root, UR5_WORKSPACE_URDF_PATH))
self.blender_recorder.register_object(self.ur5, os.path.join(self.assets_root, UR5_URDF_PATH))
self.blender_recorder.register_object(self.ee.base, self.ee.base_urdf_path)
if hasattr(self.ee, 'body'):
self.blender_recorder.register_object(self.ee.body, self.ee.urdf_path)
# Get revolute joint indices of robot (skip fixed joints).
n_joints = p.getNumJoints(self.ur5)
joints = [p.getJointInfo(self.ur5, i) for i in range(n_joints)]
self.joints = [j[0] for j in joints if j[2] == p.JOINT_REVOLUTE]
# Move robot to home joint configuration.
for i in range(len(self.joints)):
p.resetJointState(self.ur5, self.joints[i], self.homej[i])
# Reset end effector.
self.ee.release()
# Reset task.
self.task.reset(self)
# Re-enable rendering.
p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 1)
obs, _, _, _ = self.step()
return obs
def step(self, action=None):
"""Execute action with specified primitive.
Args:
action: action to execute.
Returns:
(obs, reward, done, info) tuple containing MDP step data.
"""
if action is not None:
timeout = self.task.primitive(self.movej, self.movep, self.ee, action['pose0'], action['pose1'])
# Exit early if action times out. We still return an observation
# so that we don't break the Gym API contract.
if timeout:
obs = {'color': (), 'depth': ()}
for config in self.agent_cams:
color, depth, _ = self.render_camera(config)
obs['color'] += (color,)
obs['depth'] += (depth,)
return obs, 0.0, True, self.info
start_time = time.time()
# Step simulator asynchronously until objects settle.
while not self.is_static:
self.step_simulation()
if time.time() - start_time > 5: # timeout
break
# Get task rewards.
reward, info = self.task.reward() if action is not None else (0, {})
done = self.task.done()
# Add ground truth robot state into info.
info.update(self.info)
obs = self._get_obs()
return obs, reward, done, info
def step_simulation(self):
p.stepSimulation()
self.step_counter += 1
if self.save_video and self.step_counter % 5 == 0:
self.add_video_frame()
def render(self, mode='rgb_array'):
# Render only the color image from the first camera.
# Only support rgb_array for now.
if mode != 'rgb_array':
raise NotImplementedError('Only rgb_array implemented')
color, _, _ = self.render_camera(self.agent_cams[0])
return color
def render_camera(self, config, image_size=None, shadow=1):
"""Render RGB-D image with specified camera configuration."""
if not image_size:
image_size = config['image_size']
# OpenGL camera settings.
lookdir = np.float32([0, 0, 1]).reshape(3, 1)
updir = np.float32([0, -1, 0]).reshape(3, 1)
rotation = p.getMatrixFromQuaternion(config['rotation'])
rotm = np.float32(rotation).reshape(3, 3)
lookdir = (rotm @ lookdir).reshape(-1)
updir = (rotm @ updir).reshape(-1)
lookat = config['position'] + lookdir
focal_len = config['intrinsics'][0]
znear, zfar = config['zrange']
viewm = p.computeViewMatrix(config['position'], lookat, updir)
fovh = (image_size[0] / 2) / focal_len
fovh = 180 * np.arctan(fovh) * 2 / np.pi
# Notes: 1) FOV is vertical FOV 2) aspect must be float
aspect_ratio = image_size[1] / image_size[0]
projm = p.computeProjectionMatrixFOV(fovh, aspect_ratio, znear, zfar)
# Render with OpenGL camera settings.
_, _, color, depth, segm = p.getCameraImage(
width=image_size[1],
height=image_size[0],
viewMatrix=viewm,
projectionMatrix=projm,
shadow=shadow,
flags=p.ER_SEGMENTATION_MASK_OBJECT_AND_LINKINDEX,
renderer=p.ER_BULLET_HARDWARE_OPENGL)
# Get color image.
color_image_size = (image_size[0], image_size[1], 4)
color = np.array(color, dtype=np.uint8).reshape(color_image_size)
color = color[:, :, :3] # remove alpha channel
if config['noise']:
color = np.int32(color)
color += np.int32(self._random.normal(0, 3, image_size))
color = np.uint8(np.clip(color, 0, 255))
# Get depth image.
depth_image_size = (image_size[0], image_size[1])
zbuffer = np.array(depth).reshape(depth_image_size)
depth = (zfar + znear - (2. * zbuffer - 1.) * (zfar - znear))
depth = (2. * znear * zfar) / depth
if config['noise']:
depth += self._random.normal(0, 0.003, depth_image_size)
# Get segmentation image.
segm = np.uint8(segm).reshape(depth_image_size)
return color, depth, segm
@property
def info(self):
"""Environment info variable with object poses, dimensions, and colors."""
# Some tasks create and remove zones, so ignore those IDs.
# removed_ids = []
# if (isinstance(self.task, tasks.names['cloth-flat-notarget']) or
# isinstance(self.task, tasks.names['bag-alone-open'])):
# removed_ids.append(self.task.zone_id)
info = {} # object id : (position, rotation, dimensions)
for obj_ids in self.obj_ids.values():
for obj_id in obj_ids:
pos, rot = p.getBasePositionAndOrientation(obj_id)
dim = p.getVisualShapeData(obj_id)[0][3]
info[obj_id] = (pos, rot, dim)
info['lang_goal'] = self.get_lang_goal()
return info
def set_task(self, task):
task.set_assets_root(self.assets_root)
self.task = task
def get_task_name(self):
return type(self.task).__name__
def get_lang_goal(self):
if self.task:
return self.task.get_lang_goal()
else:
raise Exception("No task for was set")
# ---------------------------------------------------------------------------
# Robot Movement Functions
# ---------------------------------------------------------------------------
def movej(self, targj, speed=0.01, timeout=5):
"""Move UR5 to target joint configuration."""
if self.save_video:
timeout = timeout * 5 # 50?
t0 = time.time()
while (time.time() - t0) < timeout:
currj = [p.getJointState(self.ur5, i)[0] for i in self.joints]
currj = np.array(currj)
diffj = targj - currj
if all(np.abs(diffj) < 1e-2):
return False
# Move with constant velocity
norm = np.linalg.norm(diffj)
v = diffj / norm if norm > 0 else 0
stepj = currj + v * speed
gains = np.ones(len(self.joints))
p.setJointMotorControlArray(
bodyIndex=self.ur5,
jointIndices=self.joints,
controlMode=p.POSITION_CONTROL,
targetPositions=stepj,
positionGains=gains)
self.step_counter += 1
self.step_simulation()
print(f'Warning: movej exceeded {timeout} second timeout. Skipping.')
return True
def start_rec(self, video_filename):
assert self.record_cfg
# make video directory
if not os.path.exists(self.record_cfg['save_video_path']):
os.makedirs(self.record_cfg['save_video_path'])
# close and save existing writer
if hasattr(self, 'video_writer'):
self.video_writer.close()
self.curr_video = []
# initialize writer
self.video_writer = imageio.get_writer(os.path.join(self.record_cfg['save_video_path'],
f"{video_filename}.mp4"),
fps=self.record_cfg['fps'],
format='FFMPEG',
codec='h264',)
p.setRealTimeSimulation(False)
self.save_video = True
def end_rec(self):
if hasattr(self, 'video_writer'):
self.video_writer.close()
p.setRealTimeSimulation(True)
self.save_video = False
def add_video_frame(self):
# Render frame.
config = self.agent_cams[0]
image_size = (self.record_cfg['video_height'], self.record_cfg['video_width'])
color, depth, _ = self.render_camera(config, image_size, shadow=0)
color = np.array(color)
if hasattr(self.record_cfg, 'blender_render') and self.record_cfg['blender_render']:
# print("add blender key frame")
self.blender_recorder.add_keyframe()
# Add language instruction to video.
if self.record_cfg['add_text']:
lang_goal = self.get_lang_goal()
reward = f"Success: {self.task.get_reward():.3f}"
font = cv2.FONT_HERSHEY_DUPLEX
font_scale = 0.65
font_thickness = 1
# Write language goal.
line_length = 60
for i in range(len(lang_goal) // line_length + 1):
lang_textsize = cv2.getTextSize(lang_goal[i*line_length:(i+1)*line_length], font, font_scale, font_thickness)[0]
lang_textX = (image_size[1] - lang_textsize[0]) // 2
color = cv2.putText(color, lang_goal[i*line_length:(i+1)*line_length], org=(lang_textX, 570+i*30), # 600
fontScale=font_scale,
fontFace=font,
color=(0, 0, 0),
thickness=font_thickness, lineType=cv2.LINE_AA)
## Write Reward.
# reward_textsize = cv2.getTextSize(reward, font, font_scale, font_thickness)[0]
# reward_textX = (image_size[1] - reward_textsize[0]) // 2
#
# color = cv2.putText(color, reward, org=(reward_textX, 634),
# fontScale=font_scale,
# fontFace=font,
# color=(0, 0, 0),
# thickness=font_thickness, lineType=cv2.LINE_AA)
color = np.array(color)
if 'add_task_text' in self.record_cfg and self.record_cfg['add_task_text']:
lang_goal = self.get_task_name()
reward = f"Success: {self.task.get_reward():.3f}"
font = cv2.FONT_HERSHEY_DUPLEX
font_scale = 1
font_thickness = 2
# Write language goal.
lang_textsize = cv2.getTextSize(lang_goal, font, font_scale, font_thickness)[0]
lang_textX = (image_size[1] - lang_textsize[0]) // 2
color = cv2.putText(color, lang_goal, org=(lang_textX, 600),
fontScale=font_scale,
fontFace=font,
color=(255, 0, 0),
thickness=font_thickness, lineType=cv2.LINE_AA)
color = np.array(color)
self.video_writer.append_data(color)
self.curr_video.append(color)
def movep(self, pose, speed=0.01):
"""Move UR5 to target end effector pose."""
targj = self.solve_ik(pose)
return self.movej(targj, speed)
def solve_ik(self, pose):
"""Calculate joint configuration with inverse kinematics."""
joints = p.calculateInverseKinematics(
bodyUniqueId=self.ur5,
endEffectorLinkIndex=self.ee_tip,
targetPosition=pose[0],
targetOrientation=pose[1],
lowerLimits=[-3 * np.pi / 2, -2.3562, -17, -17, -17, -17],
upperLimits=[-np.pi / 2, 0, 17, 17, 17, 17],
jointRanges=[np.pi, 2.3562, 34, 34, 34, 34], # * 6,
restPoses=np.float32(self.homej).tolist(),
maxNumIterations=100,
residualThreshold=1e-5)
joints = np.float32(joints)
joints[2:] = (joints[2:] + np.pi) % (2 * np.pi) - np.pi
return joints
def _get_obs(self):
# Get RGB-D camera image observations.
obs = {'color': (), 'depth': ()}
for config in self.agent_cams:
color, depth, _ = self.render_camera(config)
obs['color'] += (color,)
obs['depth'] += (depth,)
return obs
def get_object_pose(self, obj_id):
return p.getBasePositionAndOrientation(obj_id)
def get_object_size(self, obj_id):
""" approximate object's size using AABB """
aabb_min, aabb_max = p.getAABB(obj_id)
size_x = aabb_max[0] - aabb_min[0]
size_y = aabb_max[1] - aabb_min[1]
size_z = aabb_max[2] - aabb_min[2]
return size_z * size_y * size_x
class EnvironmentNoRotationsWithHeightmap(Environment):
"""Environment that disables any rotations and always passes [0, 0, 0, 1]."""
def __init__(self,
assets_root,
task=None,
disp=False,
shared_memory=False,
hz=240):
super(EnvironmentNoRotationsWithHeightmap,
self).__init__(assets_root, task, disp, shared_memory, hz)
heightmap_tuple = [
gym.spaces.Box(0.0, 20.0, (320, 160, 3), dtype=np.float32),
gym.spaces.Box(0.0, 20.0, (320, 160), dtype=np.float32),
]
self.observation_space = gym.spaces.Dict({
'heightmap': gym.spaces.Tuple(heightmap_tuple),
})
self.action_space = gym.spaces.Dict({
'pose0': gym.spaces.Tuple((self.position_bounds,)),
'pose1': gym.spaces.Tuple((self.position_bounds,))
})
def step(self, action=None):
"""Execute action with specified primitive.
Args:
action: action to execute.
Returns:
(obs, reward, done, info) tuple containing MDP step data.
"""
if action is not None:
action = {
'pose0': (action['pose0'][0], [0., 0., 0., 1.]),
'pose1': (action['pose1'][0], [0., 0., 0., 1.]),
}
return super(EnvironmentNoRotationsWithHeightmap, self).step(action)
def _get_obs(self):
obs = {}
color_depth_obs = {'color': (), 'depth': ()}
for config in self.agent_cams:
color, depth, _ = self.render_camera(config)
color_depth_obs['color'] += (color,)
color_depth_obs['depth'] += (depth,)
cmap, hmap = utils.get_fused_heightmap(color_depth_obs, self.agent_cams,
self.task.bounds, pix_size=0.003125)
obs['heightmap'] = (cmap, hmap)
return obs
|