File size: 2,973 Bytes
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch.nn as nn
import torch.nn.functional as F

import cliport.utils.utils as utils
from cliport.models.resnet import IdentityBlock, ConvBlock
from cliport.models.core.unet import Up

from cliport.models.rn50_bert_lingunet_lat import RN50BertLingUNetLat


class RN50BertLingUNet(RN50BertLingUNetLat):
    """ ImageNet RN50 & Bert with U-Net skip connections but without lateral connections """

    def __init__(self, input_shape, output_dim, cfg, device, preprocess):
        super().__init__(input_shape, output_dim, cfg, device, preprocess)

    def _build_decoder(self):
        self.conv1 = nn.Sequential(
            nn.Conv2d(self.input_dim, 1024, kernel_size=3, stride=1, padding=1, bias=False),
            nn.ReLU(True)
        )
        self.up1 = Up(2048, 1024 // self.up_factor, self.bilinear)
        self.up2 = Up(1024, 512 // self.up_factor, self.bilinear)
        self.up3 = Up(512, 256 // self.up_factor, self.bilinear)

        self.layer1 =  nn.Sequential(
            ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        self.layer2 = nn.Sequential(
            ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        self.layer3 = nn.Sequential(
            ConvBlock(32, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(16, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        self.conv2 = nn.Sequential(
            nn.Conv2d(16, self.output_dim, kernel_size=1)
        )

    def forward(self, x, l):
        x = self.preprocess(x, dist='clip')

        in_type = x.dtype
        in_shape = x.shape
        x = x[:,:3]  # select RGB
        x, im = self.encode_image(x)
        x = x.to(in_type)

        # encode language
        l_enc, l_emb, l_mask = self.encode_text(l)
        l_input = l_emb if 'word' in self.lang_fusion_type else l_enc
        l_input = l_input.to(dtype=x.dtype)

        # encode image
        assert x.shape[1] == self.input_dim
        x = self.conv1(x)

        x = self.lang_fuser1(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj1)
        x = self.up1(x, im[-2])

        x = self.lang_fuser2(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj2)
        x = self.up2(x, im[-3])

        x = self.lang_fuser3(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj3)
        x = self.up3(x, im[-4])

        for layer in [self.layer1, self.layer2, self.layer3, self.conv2]:
            x = layer(x)

        x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear')
        return x