File size: 4,883 Bytes
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
import torch.nn as nn
import torch.nn.functional as F

import cliport.utils.utils as utils

from cliport.models.resnet import ConvBlock, IdentityBlock

class ResNet45_10s(nn.Module):
    def __init__(self, input_shape, output_dim, cfg, device, preprocess):
        super(ResNet45_10s, self).__init__()
        self.input_shape = input_shape
        self.input_dim = input_shape[-1]
        self.output_dim = output_dim
        self.cfg = cfg
        self.device = device
        self.batchnorm = self.cfg['train']['batchnorm']
        self.preprocess = preprocess
        # import IPython; IPython.embed()

        self._make_layers()

    def _make_layers(self):
        # conv1
        self.conv1 = nn.Sequential(
            nn.Conv2d(self.input_dim, 64, stride=1, kernel_size=3, padding=1),
            nn.BatchNorm2d(64) if self.batchnorm else nn.Identity(),
            nn.ReLU(True),
        )

        # fcn
        self.layer1 = nn.Sequential(
            ConvBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        )

        self.layer2 = nn.Sequential(
            ConvBlock(64, [128, 128, 128], kernel_size=3, stride=2, batchnorm=self.batchnorm),
            IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        )

        self.layer3 = nn.Sequential(
            ConvBlock(128, [256, 256, 256], kernel_size=3, stride=2, batchnorm=self.batchnorm),
            IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        )

        self.layer4 = nn.Sequential(
            ConvBlock(256, [512, 512, 512], kernel_size=3, stride=2, batchnorm=self.batchnorm),
            IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        )

        # self.layer5 = nn.Sequential(
        #     ConvBlock(512, [1024, 1024, 1024], kernel_size=3, stride=2, batchnorm=self.batchnorm),
        #     IdentityBlock(1024, [1024, 1024, 1024], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        # )

        # # head
        # self.layer6 = nn.Sequential(
        #     ConvBlock(1024, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        #     IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm),
        #     nn.UpsamplingBilinear2d(scale_factor=2),
        # )

        self.layer7 = nn.Sequential(
            ConvBlock(512, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        self.layer8 = nn.Sequential(
            ConvBlock(256, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        self.layer9 = nn.Sequential(
            ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        self.layer10 = nn.Sequential(
            ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )

        # conv2
        self.conv2 = nn.Sequential(
            ConvBlock(32, [16, 16, self.output_dim], kernel_size=3, stride=1,
                      final_relu=False, batchnorm=self.batchnorm),
            IdentityBlock(self.output_dim, [16, 16, self.output_dim], kernel_size=3, stride=1,
                          final_relu=False, batchnorm=self.batchnorm)
        )

    def forward(self, x):
        x = self.preprocess(x, dist='transporter')
        in_shape = x.shape

        # # encoder
        # for layer in [self.conv1, self.layer1, self.layer2, self.layer3, self.layer4, self.layer5]:
        #     x = layer(x)

        # # decoder
        # im = []
        # for layer in [self.layer6, self.layer7, self.layer8, self.layer9, self.layer10, self.conv2]:
        #     im.append(x)
        #     x = layer(x)

        # encoder
        for layer in [self.conv1, self.layer1, self.layer2, self.layer3, self.layer4]:
            x = layer(x)

        # decoder
        im = []
        for layer in [self.layer7, self.layer8, self.layer9, self.layer10, self.conv2]:
            im.append(x)
            x = layer(x)

        x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear')
        return x, im