File size: 6,617 Bytes
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Misc functions, including distributed helpers.

Mostly copy-paste from torchvision references.
"""
import os
import subprocess
from typing import Any, Dict, List, Optional

import torch
import torchvision
from torch import Tensor


def get_sha():
    cwd = os.path.dirname(os.path.abspath(__file__))

    def _run(command):
        return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()

    sha = "N/A"
    diff = "clean"
    branch = "N/A"
    try:
        sha = _run(["git", "rev-parse", "HEAD"])
        subprocess.check_output(["git", "diff"], cwd=cwd)
        diff = _run(["git", "diff-index", "HEAD"])
        diff = "has uncommited changes" if diff else "clean"
        branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
    except Exception:
        pass
    message = f"sha: {sha}, status: {diff}, branch: {branch}"
    return message


def collate_fn(do_round, batch):
    batch = list(zip(*batch))
    final_batch = {}
    final_batch["samples"] = NestedTensor.from_tensor_list(batch[0], do_round)
    final_batch["targets"] = batch[1]
    if "positive_map" in batch[1][0]:
        # we batch the positive maps here
        # Since in general each batch element will have a different number of boxes,
        # we collapse a single batch dimension to avoid padding. This is sufficient for our purposes.
        max_len = max([v["positive_map"].shape[1] for v in batch[1]])
        nb_boxes = sum([v["positive_map"].shape[0] for v in batch[1]])
        batched_pos_map = torch.zeros((nb_boxes, max_len), dtype=torch.bool)
        cur_count = 0
        for v in batch[1]:
            cur_pos = v["positive_map"]
            batched_pos_map[cur_count : cur_count + len(cur_pos), : cur_pos.shape[1]] = cur_pos
            cur_count += len(cur_pos)

        assert cur_count == len(batched_pos_map)
        # assert batched_pos_map.sum().item() == sum([v["positive_map"].sum().item() for v in batch[1]])
        final_batch["positive_map"] = batched_pos_map.float()
    if "positive_map_eval" in batch[1][0]:
        # we batch the positive maps here
        # Since in general each batch element will have a different number of boxes,
        # we collapse a single batch dimension to avoid padding. This is sufficient for our purposes.
        max_len = max([v["positive_map_eval"].shape[1] for v in batch[1]])
        nb_boxes = sum([v["positive_map_eval"].shape[0] for v in batch[1]])
        batched_pos_map = torch.zeros((nb_boxes, max_len), dtype=torch.bool)
        cur_count = 0
        for v in batch[1]:
            cur_pos = v["positive_map_eval"]
            batched_pos_map[cur_count : cur_count + len(cur_pos), : cur_pos.shape[1]] = cur_pos
            cur_count += len(cur_pos)

        assert cur_count == len(batched_pos_map)
        # assert batched_pos_map.sum().item() == sum([v["positive_map"].sum().item() for v in batch[1]])
        final_batch["positive_map_eval"] = batched_pos_map.float()
    if "answer" in batch[1][0] or "answer_type" in batch[1][0]:
        answers = {}
        for f in batch[1][0].keys():
            if "answer" not in f:
                continue
            answers[f] = torch.stack([b[f] for b in batch[1]])
        final_batch["answers"] = answers

    return final_batch


class NestedTensor(object):
    def __init__(self, tensors, mask):
        self.tensors = tensors
        self.mask = mask

    def to(self, *args, **kwargs):
        cast_tensor = self.tensors.to(*args, **kwargs)
        cast_mask = self.mask.to(*args, **kwargs) if self.mask is not None else None
        return type(self)(cast_tensor, cast_mask)

    def decompose(self):
        return self.tensors, self.mask

    @classmethod
    def from_tensor_list(cls, tensor_list, do_round=False):
        # TODO make this more general
        if tensor_list[0].ndim == 3:
            # TODO make it support different-sized images
            max_size = tuple(max(s) for s in zip(*[img.shape for img in tensor_list]))
            # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
            batch_shape = (len(tensor_list),) + max_size
            b, c, h, w = batch_shape
            if do_round:
                # Round to an even size to avoid rounding issues in fpn
                p = 128
                h = h if h % p == 0 else (h // p + 1) * p
                w = w if w % p == 0 else (w // p + 1) * p
                batch_shape = b, c, h, w

            dtype = tensor_list[0].dtype
            device = tensor_list[0].device
            tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
            mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
            for img, pad_img, m in zip(tensor_list, tensor, mask):
                pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
                m[: img.shape[1], : img.shape[2]] = False
        else:
            raise ValueError("not supported")
        return cls(tensor, mask)

    def __repr__(self):
        return repr(self.tensors)


def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
    # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
    """
    Equivalent to nn.functional.interpolate, but with support for empty channel sizes.
    """
    if input.numel() > 0:
        return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners)

    assert input.shape[0] != 0 or input.shape[1] != 0, "At least one of the two first dimensions must be non zero"

    if input.shape[1] == 0:
        # Pytorch doesn't support null dimension on the channel dimension, so we transpose to fake a null batch dim
        return torch.nn.functional.interpolate(input.transpose(0, 1), size, scale_factor, mode, align_corners).transpose(0, 1)

    # empty batch dimension is now supported in pytorch
    return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners)



def targets_to(targets: List[Dict[str, Any]], device):
    """Moves the target dicts to the given device."""
    excluded_keys = [
        "questionId",
        "tokens_positive",
        "tokens",
        "dataset_name",
        "sentence_id",
        "original_img_id",
        "nb_eval",
        "task_id",
        "original_id",
    ]
    return [{k: v.to(device) if k not in excluded_keys else v for k, v in t.items() if k != "caption"} for t in targets]