File size: 5,760 Bytes
8fc2b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
import torch.nn.functional as F

import cliport.utils.utils as utils
from cliport.models.resnet import IdentityBlock, ConvBlock
from cliport.models.core.unet import Up
from cliport.models.core.clip import build_model, load_clip, tokenize

from cliport.models.core import fusion
from cliport.models.core.fusion import FusionConvLat


class CLIPLingUNetLat(nn.Module):
    """ CLIP RN50 with U-Net skip connections and lateral connections """

    def __init__(self, input_shape, output_dim, cfg, device, preprocess):
        super(CLIPLingUNetLat, self).__init__()
        self.input_shape = input_shape
        self.output_dim = output_dim
        self.input_dim = 2048  # penultimate layer channel-size of CLIP-RN50
        self.cfg = cfg
        self.device = device
        self.batchnorm = self.cfg['train']['batchnorm']
        self.lang_fusion_type = self.cfg['train']['lang_fusion_type']
        self.bilinear = True
        self.up_factor = 2 if self.bilinear else 1
        self.preprocess = preprocess

        self._load_clip()
        self._build_decoder()

    def _load_clip(self):
        model, _ = load_clip("RN50", device=self.device)
        self.clip_rn50 = build_model(model.state_dict()).to(self.device)
        del model

    def _build_decoder(self):
        # language
        self.lang_fuser1 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 2)
        self.lang_fuser2 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 4)
        self.lang_fuser3 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 8)

        self.proj_input_dim = 512 if 'word' in self.lang_fusion_type else 1024
        self.lang_proj1 = nn.Linear(self.proj_input_dim, 1024)
        self.lang_proj2 = nn.Linear(self.proj_input_dim, 512)
        self.lang_proj3 = nn.Linear(self.proj_input_dim, 256)

        # vision
        # self.conv1 = nn.Sequential(
        #     nn.Conv2d(self.input_dim, 1024, kernel_size=3, stride=1, padding=1, bias=False),
        #     nn.ReLU(True)
        # )

        # self.up1 = Up(2048, 1024 // self.up_factor, self.bilinear)
        # self.lat_fusion1 = FusionConvLat(input_dim=1024+512, output_dim=512)

        # self.up2 = Up(1024, 512 // self.up_factor, self.bilinear)
        # self.lat_fusion2 = FusionConvLat(input_dim=512+256, output_dim=256)
        
        self.conv1 = nn.Sequential(
            nn.Conv2d(self.input_dim, 256, kernel_size=3, stride=1, padding=1, bias=False),
            nn.ReLU(True)
        )

        self.up3 = Up(512, 256 // self.up_factor, self.bilinear)
        self.lat_fusion3 = FusionConvLat(input_dim=256+128, output_dim=128)

        self.layer1 = nn.Sequential(
            ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )
        self.lat_fusion4 = FusionConvLat(input_dim=128+64, output_dim=64)

        self.layer2 = nn.Sequential(
            ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )
        self.lat_fusion5 = FusionConvLat(input_dim=64+32, output_dim=32)

        self.layer3 = nn.Sequential(
            ConvBlock(32, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            IdentityBlock(16, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm),
            nn.UpsamplingBilinear2d(scale_factor=2),
        )
        self.lat_fusion6 = FusionConvLat(input_dim=32+16, output_dim=16)

        self.conv2 = nn.Sequential(
            nn.Conv2d(16, self.output_dim, kernel_size=1)
        )

    def encode_image(self, img):
        with torch.no_grad():
            img_encoding, img_im = self.clip_rn50.visual.prepool_im(img)
        return img_encoding, img_im

    def encode_text(self, x):
        with torch.no_grad():
            tokens = tokenize(x).to(self.device)
            text_feat, text_emb = self.clip_rn50.encode_text_with_embeddings(tokens)

        text_mask = torch.where(tokens==0, tokens, 1)  # [1, max_token_len]
        return text_feat, text_emb, text_mask

    def forward(self, x, lat, l):
        x = self.preprocess(x, dist='clip')

        in_type = x.dtype
        in_shape = x.shape
        x = x[:,:3]  # select RGB
        x, im = self.encode_image(x)
        x = x.to(in_type)

        l_enc, l_emb, l_mask = self.encode_text(l)
        l_input = l_emb if 'word' in self.lang_fusion_type else l_enc
        l_input = l_input.to(dtype=x.dtype)

        assert x.shape[1] == self.input_dim
        x = self.conv1(x)

        # x = self.lang_fuser1(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj1)
        # x = self.up1(x, im[-2])
        # x = self.lat_fusion1(x, lat[-6])

        # x = self.lang_fuser2(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj2)
        # x = self.up2(x, im[-3])
        # x = self.lat_fusion2(x, lat[-5])
        if (x.shape[0] > 8) and ((x.shape[0] % 36) == 0):
            l_input = l_input.repeat_interleave(36, dim=0)

        x = self.lang_fuser3(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj3)
        x = self.up3(x, im[-4])
        x = self.lat_fusion3(x, lat[-4])

        x = self.layer1(x)
        x = self.lat_fusion4(x, lat[-3])

        x = self.layer2(x)
        x = self.lat_fusion5(x, lat[-2])

        x = self.layer3(x)
        x = self.lat_fusion6(x, lat[-1])

        x = self.conv2(x)

        x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear')
        return x