Spaces:
Runtime error
Runtime error
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from typing import Optional, Union, List, Callable | |
import PIL | |
import numpy as np | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint_legacy import preprocess_image, deprecate, StableDiffusionInpaintPipelineLegacy, StableDiffusionPipelineOutput, PIL_INTERPOLATION | |
def preprocess_mask(mask, scale_factor=8): | |
mask = mask.convert("L") | |
w, h = mask.size | |
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 | |
#input_mask = mask.resize((w, h), resample=PIL_INTERPOLATION["nearest"]) | |
input_mask = np.array(mask).astype(np.float32) / 255.0 | |
input_mask = np.tile(input_mask, (3, 1, 1)) | |
input_mask = input_mask[None].transpose(0, 1, 2, 3) # add batch dimension | |
input_mask = 1 - input_mask # repaint white, keep black | |
input_mask = torch.round(torch.from_numpy(input_mask)) | |
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"]) | |
mask = np.array(mask).astype(np.float32) / 255.0 | |
mask = np.tile(mask, (4, 1, 1)) | |
mask = mask[None].transpose(0, 1, 2, 3) # add batch dimension | |
mask = 1 - mask # repaint white, keep black | |
mask = torch.round(torch.from_numpy(mask)) | |
return mask, input_mask | |
class SDInpaintPipeline(StableDiffusionInpaintPipelineLegacy): | |
# forward call is same as StableDiffusionInpaintPipelineLegacy, but with line added to avoid noise added to final latents right before decoding step | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
strength: float = 0.8, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
add_predicted_noise: Optional[bool] = False, | |
eta: Optional[float] = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
preserve_unmasked_image: bool = True, | |
**kwargs, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
image (`torch.FloatTensor` or `PIL.Image.Image`): | |
`Image`, or tensor representing an image batch, that will be used as the starting point for the | |
process. This is the image whose masked region will be inpainted. | |
mask_image (`torch.FloatTensor` or `PIL.Image.Image`): | |
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | |
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a | |
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should | |
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. | |
strength (`float`, *optional*, defaults to 0.8): | |
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` | |
is 1, the denoising process will be run on the masked area for the full number of iterations specified | |
in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more noise to | |
that region the larger the `strength`. If `strength` is 0, no inpainting will occur. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at | |
the expense of slower inference. This parameter will be modulated by `strength`, as explained above. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
add_predicted_noise (`bool`, *optional*, defaults to True): | |
Use predicted noise instead of random noise when constructing noisy versions of the original image in | |
the reverse diffusion process | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
preserve_unmasked_image (`bool`, *optional*, defaults to `True`): | |
Whether or not to preserve the unmasked portions of the original image in the inpainted output. If False, | |
inpainting of the masked latents may produce noticeable distortion of unmasked portions of the decoded | |
image. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
message = "Please use `image` instead of `init_image`." | |
init_image = deprecate("init_image", "0.13.0", message, take_from=kwargs) | |
image = init_image or image | |
# 1. Check inputs | |
self.check_inputs(prompt, strength, callback_steps) | |
# 2. Define call parameters | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_embeddings = self._encode_prompt( | |
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt | |
) | |
# 4. Preprocess image and mask | |
if not isinstance(image, torch.FloatTensor): | |
image = preprocess_image(image) | |
# get mask corresponding to input latents as well as image | |
if not isinstance(mask_image, torch.FloatTensor): | |
mask_image, input_mask_image = preprocess_mask(mask_image, self.vae_scale_factor) | |
# 5. set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
# 6. Prepare latent variables | |
# encode the init image into latents and scale the latents | |
latents, init_latents_orig, noise = self.prepare_latents( | |
image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, device, generator | |
) | |
# 7. Prepare mask latent | |
mask = mask_image.to(device=self.device, dtype=latents.dtype) | |
mask = torch.cat([mask] * batch_size * num_images_per_prompt) | |
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 9. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# masking | |
if add_predicted_noise: | |
init_latents_proper = self.scheduler.add_noise( | |
init_latents_orig, noise_pred_uncond, torch.tensor([t]) | |
) | |
else: | |
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) | |
latents = (init_latents_proper * mask) + (latents * (1 - mask)) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# use original latents corresponding to unmasked portions of the image | |
# necessary step because noise is still added to "init_latents_proper" after final denoising step | |
latents = (init_latents_orig * mask) + (latents * (1 - mask)) | |
# 10. Post-processing | |
if preserve_unmasked_image: | |
# decode latents | |
latents = 1 / 0.18215 * latents | |
inpaint_image = self.vae.decode(latents).sample | |
# restore unmasked parts of image with original image | |
input_mask_image = input_mask_image.to(inpaint_image) | |
image = image.to(inpaint_image) | |
image = (image * input_mask_image) + (inpaint_image * (1 - input_mask_image)) # use original unmasked portions of image to avoid degradation | |
# post-processing of image | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
else: | |
image = self.decode_latents(latents) | |
# 11. Run safety checker | |
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) | |
# 12. Convert to PIL | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |