lint commited on
Commit
be0e66f
·
1 Parent(s): cab30b6

Upload folder using huggingface_hub

Browse files
Dockerfile ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ # Set up a new user named "user" with user ID 1000
10
+ RUN useradd -m -u 1000 user
11
+ # Switch to the "user" user
12
+ USER user
13
+ # Set home to the user's home directory
14
+ ENV HOME=/home/user \
15
+ PATH=/home/user/.local/bin:$PATH
16
+
17
+ # Set the working directory to the user's home directory
18
+ WORKDIR $HOME/app
19
+
20
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
21
+ COPY --chown=user . $HOME/app
22
+
23
+ CMD ["lite", "demo.yaml", "launch", "--server_name", "0.0.0.0", "--server_port", "7860"]
__pycache__/__init__.cpython-310.pyc ADDED
Binary file (143 Bytes). View file
 
__pycache__/gradify.cpython-310.pyc ADDED
Binary file (1.06 kB). View file
 
demo.yaml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lite_metadata:
2
+ gradio_version: 3.32.0
3
+ class_string: gradio.interface.Interface
4
+ kwargs:
5
+ title: Gradio Webapp
6
+ description: Given two sorted arrays nums1 and nums2 of size m and n respectively,
7
+ return the median of the two sorted arrays
8
+ article: null
9
+ thumbnail: null
10
+ theme: gradio/seafoam
11
+ css: null
12
+ allow_flagging: never
13
+ inputs:
14
+ class_string: liteobj.listify
15
+ args:
16
+ - class_string: gradio.components.Dataframe
17
+ kwargs:
18
+ label: nums1
19
+ type: array
20
+ - class_string: gradio.components.Dataframe
21
+ kwargs:
22
+ label: nums2
23
+ type: array
24
+ outputs:
25
+ class_string: liteobj.listify
26
+ args:
27
+ - class_string: gradio.components.Number
28
+ kwargs:
29
+ label: output
30
+ fn:
31
+ class_string: gradify.gradify_closure
32
+ kwargs:
33
+ argmaps:
34
+ class_string: liteobj.listify
35
+ args:
36
+ - label: nums1
37
+ postprocessing: 'lambda array: list(map(int, array[0]))'
38
+ - label: nums2
39
+ postprocessing: 'lambda array: list(map(int, array[0]))'
40
+ func_kwargs: {}
41
+ ldict:
42
+ class_string: gradify.exec_to_dict
43
+ kwargs:
44
+ source: "def findMedianSortedArrays(nums1, nums2):\n nums1.extend(nums2)\n\
45
+ \ nums1.sort()\n n = len(nums1)\n if n % 2 == 0:\n return\
46
+ \ (nums1[n // 2] + nums1[n // 2 - 1]) / 2\n else:\n return nums1[n\
47
+ \ // 2]\n"
gradify.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ def gradify_closure(ldict, argmaps, func_kwargs={}):
4
+
5
+ from types import FunctionType
6
+ for k, v in ldict.items():
7
+ if isinstance(v, FunctionType):
8
+ func = ldict.pop(k)
9
+ break
10
+
11
+ globals().update(ldict)
12
+ func_kwargs = dict(func_kwargs)
13
+
14
+ def gradify_func(*args):
15
+
16
+ try:
17
+ for (arg, argmap) in zip(args, argmaps):
18
+
19
+ postprocessing = argmap.get("postprocessing", None)
20
+ if postprocessing:
21
+ arg = eval(postprocessing)(arg)
22
+
23
+ kw_label = argmap["label"]
24
+ func_kwargs[kw_label] = arg
25
+
26
+ return func(**func_kwargs)
27
+ except Exception as e:
28
+ import gradio as gr
29
+ raise gr.Error(f"Error: {e}")
30
+
31
+ return gradify_func
32
+
33
+ def exec_to_dict(source, target=None):
34
+
35
+ ldict = {}
36
+ exec(source, globals(), ldict)
37
+
38
+ return ldict.get(target, None) if target else ldict
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ gradio==3.32
2
+ liteobj==0.0.4