linoyts HF staff commited on
Commit
a1fb6e9
Β·
verified Β·
1 Parent(s): a7f8c35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -3
app.py CHANGED
@@ -51,6 +51,23 @@ def nms(x, t, s):
51
  z[y > t] = 255
52
  return z
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  DESCRIPTION = '''# Scribble SDXL πŸ–‹οΈπŸŒ„
56
  sketch to image with SDXL, using [@xinsir](https://huggingface.co/xinsir) [scribble sdxl controlnet](https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0)
@@ -131,7 +148,10 @@ controlnet = ControlNetModel.from_pretrained(
131
  "xinsir/controlnet-scribble-sdxl-1.0",
132
  torch_dtype=torch.float16
133
  )
134
-
 
 
 
135
  # when test with other base model, you need to change the vae also.
136
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
137
 
@@ -144,6 +164,16 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
144
  )
145
  pipe.to(device)
146
  # Load model.
 
 
 
 
 
 
 
 
 
 
147
 
148
  MAX_SEED = np.iinfo(np.int32).max
149
  processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
@@ -180,6 +210,7 @@ def run(
180
  controlnet_conditioning_scale: float = 1.0,
181
  seed: int = 0,
182
  use_hed: bool = False,
 
183
  progress=gr.Progress(track_tqdm=True),
184
  ) -> PIL.Image.Image:
185
  width, height = image['composite'].size
@@ -187,7 +218,13 @@ def run(
187
  new_width, new_height = int(width * ratio), int(height * ratio)
188
  image = image['composite'].resize((new_width, new_height))
189
 
190
- if not use_hed:
 
 
 
 
 
 
191
  controlnet_img = image
192
  else:
193
  controlnet_img = processor(image, scribble=False)
@@ -206,7 +243,8 @@ def run(
206
  prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
207
 
208
  generator = torch.Generator(device=device).manual_seed(seed)
209
- out = pipe(
 
210
  prompt=prompt,
211
  negative_prompt=negative_prompt,
212
  image=image,
@@ -217,6 +255,17 @@ def run(
217
  width=new_width,
218
  height=new_height,
219
  ).images[0]
 
 
 
 
 
 
 
 
 
 
 
220
 
221
  return (controlnet_img, out)
222
 
@@ -236,6 +285,7 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
236
  prompt = gr.Textbox(label="Prompt")
237
  style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
238
  use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
 
239
  run_button = gr.Button("Run")
240
  with gr.Accordion("Advanced options", open=False):
241
  negative_prompt = gr.Textbox(
@@ -287,6 +337,7 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
287
  controlnet_conditioning_scale,
288
  seed,
289
  use_hed,
 
290
  ]
291
  outputs = [image_slider]
292
  run_button.click(
 
51
  z[y > t] = 255
52
  return z
53
 
54
+ def HWC3(x):
55
+ assert x.dtype == np.uint8
56
+ if x.ndim == 2:
57
+ x = x[:, :, None]
58
+ assert x.ndim == 3
59
+ H, W, C = x.shape
60
+ assert C == 1 or C == 3 or C == 4
61
+ if C == 3:
62
+ return x
63
+ if C == 1:
64
+ return np.concatenate([x, x, x], axis=2)
65
+ if C == 4:
66
+ color = x[:, :, 0:3].astype(np.float32)
67
+ alpha = x[:, :, 3:4].astype(np.float32) / 255.0
68
+ y = color * alpha + 255.0 * (1.0 - alpha)
69
+ y = y.clip(0, 255).astype(np.uint8)
70
+ return y
71
 
72
  DESCRIPTION = '''# Scribble SDXL πŸ–‹οΈπŸŒ„
73
  sketch to image with SDXL, using [@xinsir](https://huggingface.co/xinsir) [scribble sdxl controlnet](https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0)
 
148
  "xinsir/controlnet-scribble-sdxl-1.0",
149
  torch_dtype=torch.float16
150
  )
151
+ controlnet_canny = ControlNetModel.from_pretrained(
152
+ "xinsir/controlnet-canny-sdxl-1.0",
153
+ torch_dtype=torch.float16
154
+ )
155
  # when test with other base model, you need to change the vae also.
156
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
157
 
 
164
  )
165
  pipe.to(device)
166
  # Load model.
167
+ pipe_canny = StableDiffusionXLControlNetPipeline.from_pretrained(
168
+ "stabilityai/stable-diffusion-xl-base-1.0",
169
+ controlnet=controlnet_canny,
170
+ vae=vae,
171
+ safety_checker=None,
172
+ torch_dtype=torch.float16,
173
+ scheduler=eulera_scheduler,
174
+ )
175
+
176
+ pipe_canny.to(device)
177
 
178
  MAX_SEED = np.iinfo(np.int32).max
179
  processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
 
210
  controlnet_conditioning_scale: float = 1.0,
211
  seed: int = 0,
212
  use_hed: bool = False,
213
+ use_canny: bool = False,
214
  progress=gr.Progress(track_tqdm=True),
215
  ) -> PIL.Image.Image:
216
  width, height = image['composite'].size
 
218
  new_width, new_height = int(width * ratio), int(height * ratio)
219
  image = image['composite'].resize((new_width, new_height))
220
 
221
+ if use_canny:
222
+ controlnet_img = np.array(image)
223
+ controlnet_img = cv2.Canny(controlnet_img, 100, 200)
224
+ controlnet_img = HWC3(controlnet_img)
225
+ image = Image.fromarray(controlnet_img)
226
+
227
+ elif not use_hed:
228
  controlnet_img = image
229
  else:
230
  controlnet_img = processor(image, scribble=False)
 
243
  prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
244
 
245
  generator = torch.Generator(device=device).manual_seed(seed)
246
+ if use_canny:
247
+ out = pipe_canny(
248
  prompt=prompt,
249
  negative_prompt=negative_prompt,
250
  image=image,
 
255
  width=new_width,
256
  height=new_height,
257
  ).images[0]
258
+ else:
259
+ out = pipe(
260
+ prompt=prompt,
261
+ negative_prompt=negative_prompt,
262
+ image=image,
263
+ num_inference_steps=num_steps,
264
+ generator=generator,
265
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
266
+ guidance_scale=guidance_scale,
267
+ width=new_width,
268
+ height=new_height,).images[0]
269
 
270
  return (controlnet_img, out)
271
 
 
285
  prompt = gr.Textbox(label="Prompt")
286
  style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
287
  use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
288
+ use_canny = gr.Checkbox(label="use Canny", value=False, info="check this to use ControlNet canny instead of scribble")
289
  run_button = gr.Button("Run")
290
  with gr.Accordion("Advanced options", open=False):
291
  negative_prompt = gr.Textbox(
 
337
  controlnet_conditioning_scale,
338
  seed,
339
  use_hed,
340
+ use_canny
341
  ]
342
  outputs = [image_slider]
343
  run_button.click(