Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
from PIL import Image | |
import spaces | |
import torch | |
from huggingface_hub import hf_hub_download | |
from diffusers import FluxPriorReduxPipeline, FluxPipeline | |
from diffusers.utils import load_image | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev" , | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125) | |
pipe.fuse_lora(lora_scale=0.125) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-Redux-dev", | |
text_encoder=pipe.text_encoder, | |
tokenizer=pipe.tokenizer, | |
text_encoder_2=pipe.text_encoder_2, | |
tokenizer_2=pipe.tokenizer_2, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
examples = [[Image.open("mona_lisa.jpg"), "pink hair, at the beach", None, "", 0.035, 1., 1., 1., 1., 0, False], | |
[Image.open("1665_Girl_with_a_Pearl_Earring.jpg"), "", Image.open("dali_example.jpg"), "", 0.08, .4, .6, .33, 1., 1912857110, False]] | |
def infer(control_image, prompt, image_2, prompt_2, reference_scale= 0.03 , | |
prompt_embeds_scale_1 =1, prompt_embeds_scale_2 =1, pooled_prompt_embeds_scale_1 =1, pooled_prompt_embeds_scale_2 =1, | |
seed=42, randomize_seed=False, width=1024, height=1024, | |
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if image_2 is not None: | |
pipe_prior_output = pipe_prior_redux([control_image, image_2], | |
prompt=[prompt, prompt_2], | |
prompt_embeds_scale = [prompt_embeds_scale_1, prompt_embeds_scale_2], | |
pooled_prompt_embeds_scale = [pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2]) | |
else: | |
pipe_prior_output = pipe_prior_redux(control_image, prompt=prompt, prompt_embeds_scale = [prompt_embeds_scale_1], | |
pooled_prompt_embeds_scale = [pooled_prompt_embeds_scale_1]) | |
cond_size = 729 | |
hidden_size = 4096 | |
max_sequence_length = 512 | |
full_attention_size = max_sequence_length + hidden_size + cond_size | |
attention_mask = torch.zeros( | |
(full_attention_size, full_attention_size), device="cuda", dtype=torch.bfloat16 | |
) | |
bias = torch.log( | |
torch.tensor(reference_scale, dtype=torch.bfloat16, device="cuda").clamp(min=1e-5, max=1) | |
) | |
attention_mask[:, max_sequence_length : max_sequence_length + cond_size] = bias | |
joint_attention_kwargs=dict(attention_mask=attention_mask) | |
images = pipe( | |
guidance_scale=guidance_scale, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator("cpu").manual_seed(seed), | |
joint_attention_kwargs=joint_attention_kwargs, | |
**pipe_prior_output, | |
).images[0] | |
return images, seed | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 960px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# ⚡️ Fast FLUX.1 Redux [dev] ⚡️ | |
An adapter for FLUX [dev] to create image variations combined with ByteDance [ | |
Hyper FLUX 8 Steps LoRA](https://huggingface.co./ByteDance/Hyper-SD) 🏎️ | |
Now with added support: | |
- prompt input | |
- attention masking for improved prompt adherence | |
- multiple image interpolation | |
[[non-commercial license](https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co./black-forest-labs/FLUX.1-dev)] | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Image to create variations", type="pil") | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
reference_scale = gr.Slider( | |
info="lower to enhance prompt adherence", | |
label="Masking Scale", | |
minimum=0.01, | |
maximum=0.08, | |
step=0.001, | |
value=0.03, | |
) | |
run_button = gr.Button("Run") | |
with gr.Column(): | |
image_2 = gr.Image(label="2nd image to create interpolated variations", type="pil") | |
prompt_2 = gr.Text( | |
label="2nd Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
prompt_embeds_scale_1 = gr.Slider( | |
label="prompt embeds scale 1st image", | |
minimum=0, | |
maximum=1.5, | |
step=0.01, | |
value=1, | |
) | |
prompt_embeds_scale_2 = gr.Slider( | |
label="prompt embeds scale 2nd image", | |
minimum=0, | |
maximum=1.5, | |
step=0.01, | |
value=1, | |
) | |
pooled_prompt_embeds_scale_1 = gr.Slider( | |
label="pooled prompt embeds scale 1nd image", | |
minimum=0, | |
maximum=1.5, | |
step=0.01, | |
value=1, | |
) | |
pooled_prompt_embeds_scale_2 = gr.Slider( | |
label="pooled prompt embeds scale 2nd image", | |
minimum=0, | |
maximum=1.5, | |
step=0.01, | |
value=1, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=8, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[input_image, prompt, image_2, prompt_2, reference_scale, prompt_embeds_scale_1, prompt_embeds_scale_2, pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2, seed, randomize_seed], | |
outputs=[result, seed], | |
fn=infer, | |
) | |
gr.on( | |
triggers=[run_button.click], | |
fn = infer, | |
inputs = [input_image, prompt, image_2, prompt_2, reference_scale, prompt_embeds_scale_1, prompt_embeds_scale_2, pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.launch() |