linoyts's picture
linoyts HF staff
Update app.py
00d56f0 verified
import gradio as gr
import numpy as np
import random
from PIL import Image
import spaces
import torch
from huggingface_hub import hf_hub_download
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev" ,
torch_dtype=torch.bfloat16
).to("cuda")
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Redux-dev",
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=torch.bfloat16
).to("cuda")
examples = [[Image.open("mona_lisa.jpg"), "pink hair, at the beach", None, "", 0.035, 1., 1., 1., 1., 0, False],
[Image.open("1665_Girl_with_a_Pearl_Earring.jpg"), "", Image.open("dali_example.jpg"), "", 0.08, .4, .6, .33, 1., 1912857110, False]]
@spaces.GPU
def infer(control_image, prompt, image_2, prompt_2, reference_scale= 0.03 ,
prompt_embeds_scale_1 =1, prompt_embeds_scale_2 =1, pooled_prompt_embeds_scale_1 =1, pooled_prompt_embeds_scale_2 =1,
seed=42, randomize_seed=False, width=1024, height=1024,
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image_2 is not None:
pipe_prior_output = pipe_prior_redux([control_image, image_2],
prompt=[prompt, prompt_2],
prompt_embeds_scale = [prompt_embeds_scale_1, prompt_embeds_scale_2],
pooled_prompt_embeds_scale = [pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2])
else:
pipe_prior_output = pipe_prior_redux(control_image, prompt=prompt, prompt_embeds_scale = [prompt_embeds_scale_1],
pooled_prompt_embeds_scale = [pooled_prompt_embeds_scale_1])
cond_size = 729
hidden_size = 4096
max_sequence_length = 512
full_attention_size = max_sequence_length + hidden_size + cond_size
attention_mask = torch.zeros(
(full_attention_size, full_attention_size), device="cuda", dtype=torch.bfloat16
)
bias = torch.log(
torch.tensor(reference_scale, dtype=torch.bfloat16, device="cuda").clamp(min=1e-5, max=1)
)
attention_mask[:, max_sequence_length : max_sequence_length + cond_size] = bias
joint_attention_kwargs=dict(attention_mask=attention_mask)
images = pipe(
guidance_scale=guidance_scale,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=torch.Generator("cpu").manual_seed(seed),
joint_attention_kwargs=joint_attention_kwargs,
**pipe_prior_output,
).images[0]
return images, seed
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# ⚡️ Fast FLUX.1 Redux [dev] ⚡️
An adapter for FLUX [dev] to create image variations combined with ByteDance [
Hyper FLUX 8 Steps LoRA](https://huggingface.co./ByteDance/Hyper-SD) 🏎️
Now with added support:
- prompt input
- attention masking for improved prompt adherence
- multiple image interpolation
[[non-commercial license](https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co./black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Image to create variations", type="pil")
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
reference_scale = gr.Slider(
info="lower to enhance prompt adherence",
label="Masking Scale",
minimum=0.01,
maximum=0.08,
step=0.001,
value=0.03,
)
run_button = gr.Button("Run")
with gr.Column():
image_2 = gr.Image(label="2nd image to create interpolated variations", type="pil")
prompt_2 = gr.Text(
label="2nd Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
prompt_embeds_scale_1 = gr.Slider(
label="prompt embeds scale 1st image",
minimum=0,
maximum=1.5,
step=0.01,
value=1,
)
prompt_embeds_scale_2 = gr.Slider(
label="prompt embeds scale 2nd image",
minimum=0,
maximum=1.5,
step=0.01,
value=1,
)
pooled_prompt_embeds_scale_1 = gr.Slider(
label="pooled prompt embeds scale 1nd image",
minimum=0,
maximum=1.5,
step=0.01,
value=1,
)
pooled_prompt_embeds_scale_2 = gr.Slider(
label="pooled prompt embeds scale 2nd image",
minimum=0,
maximum=1.5,
step=0.01,
value=1,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=30,
step=1,
value=8,
)
gr.Examples(
examples=examples,
inputs=[input_image, prompt, image_2, prompt_2, reference_scale, prompt_embeds_scale_1, prompt_embeds_scale_2, pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2, seed, randomize_seed],
outputs=[result, seed],
fn=infer,
)
gr.on(
triggers=[run_button.click],
fn = infer,
inputs = [input_image, prompt, image_2, prompt_2, reference_scale, prompt_embeds_scale_1, prompt_embeds_scale_2, pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch()