linhcuem commited on
Commit
7eae14d
1 Parent(s): 639f524

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import json
3
+ import gradio as gr
4
+ import yolov5
5
+ from PIL import Image
6
+ from huggingface_hub import hf_hub_download
7
+
8
+ app_title = "Detect defects in bird nest jar"
9
+ models_ids = ['linhcuem/defects_nest_jar_yolov5']
10
+
11
+ current_model_id = models_ids[-1]
12
+ model = yolov5.load(current_model_id)
13
+
14
+ examples = [['test_images/16823291638707408-a2A2448-23gmBAS_40174045.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5'], ['test_images/16823292102253310-a2A2448-23gmBAS_40174046.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5'], ['test_images/16823291808953550-a2A2448-23gmBAS_40174048.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5'], ['test_images/16823291801532480-a2A2448-23gmBAS_40174048.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5']]
15
+
16
+ def predict(image, threshold=0.25, model_id=None):
17
+ #update model if required
18
+ global current_model_id
19
+ global model
20
+ if model_id != current_model_id:
21
+ model = yolov5.load(model_id)
22
+ current_model_id = model_id
23
+
24
+ # get model input size
25
+ config_path = hf_hub_download(repo_id=model_id, filename="config.json")
26
+ with open(config_path, "r") as f:
27
+ config = json.load(f)
28
+ input_size = config["input_size"]
29
+
30
+ #perform inference
31
+ model.conf = threshold
32
+ results = model(image, size=input_size)
33
+ numpy_image = results.render()[0]
34
+ output_image = Image.fromarray(numpy_image)
35
+ return output_image
36
+
37
+ gr.Interface(
38
+ title=app_title,
39
+ description="Do anh Dat",
40
+ article=article,
41
+ fn=predict,
42
+ inputs=[
43
+ gr.Image(type="pil"),
44
+ gr.Slider(maximum=1, step=0.01, value=0.25),
45
+ gr.Dropdown(models_ids, value=models_ids[-1]),
46
+ ],
47
+ outputs=gr.Image(type="pil"),
48
+ examples=examples,
49
+ cache_examples=True if examples else Fale,
50
+ ).launch(enable_queue=True)