linhcuem commited on
Commit
fca7821
1 Parent(s): 2ad137f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -26
app.py CHANGED
@@ -4,6 +4,9 @@ from sahi.prediction import ObjectPrediction
4
  from sahi.utils.cv import visualize_object_predictions, read_image
5
  from ultralyticsplus import YOLO
6
 
 
 
 
7
 
8
  image_path = [['test_images/2a998cfb0901db5f8210.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/2ce19ce0191acb44920b.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
9
  ['test_images/2daab6ea3310e14eb801.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/4a137deefb14294a7005 (1).jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
@@ -30,32 +33,35 @@ def yolov8_img_inference(
30
  model.conf = conf_threshold
31
  model.iou = iou_threshold
32
  results = model.predict(image, imgsz=image_size, return_outputs=True)
33
- object_prediction_list = []
34
- for _, image_results in enumerate(results):
35
- if len(image_results)!=0:
36
- image_predictions_in_xyxy_format = image_results['det']
37
- for pred in image_predictions_in_xyxy_format:
38
- x1, y1, x2, y2 = (
39
- int(pred[0]),
40
- int(pred[1]),
41
- int(pred[2]),
42
- int(pred[3]),
43
- )
44
- bbox = [x1, y1, x2, y2]
45
- score = pred[4]
46
- category_name = model.model.names[int(pred[5])]
47
- category_id = pred[5]
48
- object_prediction = ObjectPrediction(
49
- bbox=bbox,
50
- category_id=int(category_id),
51
- score=score,
52
- category_name=category_name,
53
- )
54
- object_prediction_list.append(object_prediction)
55
 
56
- image = read_image(image)
57
- output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
58
- return output_image['image']
 
 
 
59
 
60
 
61
  inputs_image = [
@@ -80,4 +86,9 @@ interface_image = gr.Interface(
80
  theme='huggingface'
81
  )
82
 
83
- interface_image.launch(debug=True, enable_queue=True)
 
 
 
 
 
 
4
  from sahi.utils.cv import visualize_object_predictions, read_image
5
  from ultralyticsplus import YOLO
6
 
7
+ from ultralyticsplus import render_result
8
+ import requests
9
+ import cv2
10
 
11
  image_path = [['test_images/2a998cfb0901db5f8210.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/2ce19ce0191acb44920b.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
12
  ['test_images/2daab6ea3310e14eb801.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/4a137deefb14294a7005 (1).jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
 
33
  model.conf = conf_threshold
34
  model.iou = iou_threshold
35
  results = model.predict(image, imgsz=image_size, return_outputs=True)
36
+ # object_prediction_list = []
37
+ # for _, image_results in enumerate(results):
38
+ # if len(image_results)!=0:
39
+ # image_predictions_in_xyxy_format = image_results['det']
40
+ # for pred in image_predictions_in_xyxy_format:
41
+ # x1, y1, x2, y2 = (
42
+ # int(pred[0]),
43
+ # int(pred[1]),
44
+ # int(pred[2]),
45
+ # int(pred[3]),
46
+ # )
47
+ # bbox = [x1, y1, x2, y2]
48
+ # score = pred[4]
49
+ # category_name = model.model.names[int(pred[5])]
50
+ # category_id = pred[5]
51
+ # object_prediction = ObjectPrediction(
52
+ # bbox=bbox,
53
+ # category_id=int(category_id),
54
+ # score=score,
55
+ # category_name=category_name,
56
+ # )
57
+ # object_prediction_list.append(object_prediction)
58
 
59
+ # image = read_image(image)
60
+ # output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
61
+ # return output_image['image']
62
+ render = render_result(model=model, image=image, result=results[0])
63
+
64
+ return render
65
 
66
 
67
  inputs_image = [
 
86
  theme='huggingface'
87
  )
88
 
89
+ gr.TabbedInterface(
90
+ [interface_image],
91
+ tab_names=['Image inference']
92
+ ).queue().launch()
93
+
94
+ # interface_image.launch(debug=True, enable_queue=True)