Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ image_path = [['test_images/2a998cfb0901db5f8210.jpg','linhcuem/chamdiem_yolov8_
|
|
19 |
['test_images/ee106392e56837366e79.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/f88d2214a4ee76b02fff.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45]]
|
20 |
|
21 |
# Load YOLO model
|
22 |
-
model = YOLO('linhcuem/chamdiem_yolov8_ver10')
|
23 |
|
24 |
###################################################
|
25 |
def yolov8_img_inference(
|
@@ -30,36 +30,45 @@ def yolov8_img_inference(
|
|
30 |
iou_threshold: gr.inputs.Slider = 0.45,
|
31 |
):
|
32 |
model = YOLO(model_path)
|
33 |
-
model.conf = conf_threshold
|
34 |
-
model.iou = iou_threshold
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# results = model.predict(image)
|
37 |
-
object_prediction_list = []
|
38 |
-
for _, image_results in enumerate(results):
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
image = read_image(image)
|
61 |
-
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
62 |
-
return output_image['image']
|
63 |
# render = render_result(model=model, image=image, result=results[0])
|
64 |
|
65 |
|
@@ -87,9 +96,9 @@ interface_image = gr.Interface(
|
|
87 |
theme='huggingface'
|
88 |
)
|
89 |
|
90 |
-
gr.TabbedInterface(
|
91 |
-
|
92 |
-
|
93 |
-
).queue().launch()
|
94 |
|
95 |
interface_image.launch(debug=True, enable_queue=True)
|
|
|
19 |
['test_images/ee106392e56837366e79.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/f88d2214a4ee76b02fff.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45]]
|
20 |
|
21 |
# Load YOLO model
|
22 |
+
# model = YOLO('linhcuem/chamdiem_yolov8_ver10')
|
23 |
|
24 |
###################################################
|
25 |
def yolov8_img_inference(
|
|
|
30 |
iou_threshold: gr.inputs.Slider = 0.45,
|
31 |
):
|
32 |
model = YOLO(model_path)
|
33 |
+
# model.conf = conf_threshold
|
34 |
+
# model.iou = iou_threshold
|
35 |
+
model.overrides['conf'] = conf_threshold
|
36 |
+
model.overrides['iou'] = iou_threshold
|
37 |
+
model.overrides['agnostic_nms'] = False
|
38 |
+
model.overrides['max_det'] = 1000
|
39 |
+
image = read_image
|
40 |
+
results = model.predict(image)
|
41 |
+
results = render_result(model=model, image=image, result=results[0])
|
42 |
+
|
43 |
+
|
44 |
+
# results = model.predict(image, imgsz=image_size, return_outputs=True)
|
45 |
# results = model.predict(image)
|
46 |
+
# object_prediction_list = []
|
47 |
+
# for _, image_results in enumerate(results):
|
48 |
+
# if len(image_results)!=0:
|
49 |
+
# image_predictions_in_xyxy_format = image_results['det']
|
50 |
+
# for pred in image_predictions_in_xyxy_format:
|
51 |
+
# x1, y1, x2, y2 = (
|
52 |
+
# int(pred[0]),
|
53 |
+
# int(pred[1]),
|
54 |
+
# int(pred[2]),
|
55 |
+
# int(pred[3]),
|
56 |
+
# )
|
57 |
+
# bbox = [x1, y1, x2, y2]
|
58 |
+
# score = pred[4]
|
59 |
+
# category_name = model.model.names[int(pred[5])]
|
60 |
+
# category_id = pred[5]
|
61 |
+
# object_prediction = ObjectPrediction(
|
62 |
+
# bbox=bbox,
|
63 |
+
# category_id=int(category_id),
|
64 |
+
# score=score,
|
65 |
+
# category_name=category_name,
|
66 |
+
# )
|
67 |
+
# object_prediction_list.append(object_prediction)
|
68 |
|
69 |
+
# image = read_image(image)
|
70 |
+
# output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
71 |
+
# return output_image['image']
|
72 |
# render = render_result(model=model, image=image, result=results[0])
|
73 |
|
74 |
|
|
|
96 |
theme='huggingface'
|
97 |
)
|
98 |
|
99 |
+
# gr.TabbedInterface(
|
100 |
+
# [interface_image],
|
101 |
+
# tab_names=['Image inference']
|
102 |
+
# ).queue().launch()
|
103 |
|
104 |
interface_image.launch(debug=True, enable_queue=True)
|