Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -31,10 +31,10 @@ image_path = [['test_images/2a998cfb0901db5f8210.jpg','cham_diem_yolov8', 640, 0
|
|
31 |
# model = YOLO('linhcuem/chamdiemgianhang_yolov8_300epochs')
|
32 |
# model = YOLO('linhcuem/chamdiemgianhang_yolov8_ver21')
|
33 |
# model = YOLO('linhcuem/cham_diem_yolov8_ver20')
|
34 |
-
model_ids = ['linhcuem/checker_TB_yolov8_ver1', 'linhcuem/cham_diem_yolov8', 'linhcuem/chamdiemgianhang_yolov8_300epochs', 'linhcuem/cham_diem_yolov8_ver20', 'linhcuem/chamdiemgianhang_yolov8_ver21']
|
35 |
-
# model = YOLO('linhcuem/checker_TB_yolov8_ver1')
|
36 |
-
current_model_id = model_ids[-1]
|
37 |
-
model = YOLO(current_model_id)
|
38 |
# model = YOLO(model_path)
|
39 |
|
40 |
###################################################
|
@@ -46,18 +46,14 @@ def yolov8_img_inference(
|
|
46 |
iou_threshold = 0.45,
|
47 |
):
|
48 |
# model = YOLO(model_path)
|
49 |
-
|
50 |
-
global model
|
51 |
-
if model_path != current_model_id:
|
52 |
-
model = YOLO(model_path)
|
53 |
-
current_model_id = model_path
|
54 |
model.conf = conf_threshold
|
55 |
model.iou = iou_threshold
|
56 |
# model.overrides['conf'] = conf_threshold
|
57 |
# model.overrides['iou'] = iou_threshold
|
58 |
# model.overrides['agnostic_nms'] = False
|
59 |
# model.overrides['max_det'] = 1000
|
60 |
-
|
61 |
results = model.predict(image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold)
|
62 |
render = render_result(model=model, image=image, result=results[0])
|
63 |
# get the model names list
|
@@ -142,7 +138,8 @@ interface_image = gr.Interface(
|
|
142 |
fn=yolov8_img_inference,
|
143 |
inputs=[
|
144 |
gr.Image(type='pil'),
|
145 |
-
gr.Dropdown(
|
|
|
146 |
gr.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
147 |
gr.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
148 |
gr.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
|
|
31 |
# model = YOLO('linhcuem/chamdiemgianhang_yolov8_300epochs')
|
32 |
# model = YOLO('linhcuem/chamdiemgianhang_yolov8_ver21')
|
33 |
# model = YOLO('linhcuem/cham_diem_yolov8_ver20')
|
34 |
+
# model_ids = ['linhcuem/checker_TB_yolov8_ver1', 'linhcuem/cham_diem_yolov8', 'linhcuem/chamdiemgianhang_yolov8_300epochs', 'linhcuem/cham_diem_yolov8_ver20', 'linhcuem/chamdiemgianhang_yolov8_ver21']
|
35 |
+
# # model = YOLO('linhcuem/checker_TB_yolov8_ver1')
|
36 |
+
# current_model_id = model_ids[-1]
|
37 |
+
# model = YOLO(current_model_id)
|
38 |
# model = YOLO(model_path)
|
39 |
|
40 |
###################################################
|
|
|
46 |
iou_threshold = 0.45,
|
47 |
):
|
48 |
# model = YOLO(model_path)
|
49 |
+
model = YOLO(model_path)
|
|
|
|
|
|
|
|
|
50 |
model.conf = conf_threshold
|
51 |
model.iou = iou_threshold
|
52 |
# model.overrides['conf'] = conf_threshold
|
53 |
# model.overrides['iou'] = iou_threshold
|
54 |
# model.overrides['agnostic_nms'] = False
|
55 |
# model.overrides['max_det'] = 1000
|
56 |
+
image = read_image
|
57 |
results = model.predict(image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold)
|
58 |
render = render_result(model=model, image=image, result=results[0])
|
59 |
# get the model names list
|
|
|
138 |
fn=yolov8_img_inference,
|
139 |
inputs=[
|
140 |
gr.Image(type='pil'),
|
141 |
+
gr.Dropdown(["linhcuem/checker_TB_yolov8_ver1", "linhcuem/chamdiemgianhang_yolov8_ver21"],
|
142 |
+
default="linhcuem/checker_TB_yolov8_ver1", label="Model"),
|
143 |
gr.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
144 |
gr.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
145 |
gr.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|