Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
# from sahi.prediction import ObjectPrediction | |
# from sahi.utils.cv import visualize_object_predictions, read_image | |
import os | |
import requests | |
import json | |
import cv2 | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
from ultralyticsplus import YOLO, render_result | |
from ultralyticsplus.hf_utils import download_from_hub | |
# from ultralyticsplus import render_result | |
# import requests | |
# import cv2 | |
image_path = [['test_images/2a998cfb0901db5f8210.jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/2ce19ce0191acb44920b.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/2daab6ea3310e14eb801.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/4a137deefb14294a7005 (1).jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/7e77c596436c9132c87d.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/170f914014bac6e49fab.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/3355ec3269c8bb96e2d9.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/546306a88052520c0b43.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/33148464019ed3c08a8f.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/a17a992a1cd0ce8e97c1.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/b5db5e42d8b80ae653a9 (1).jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/b8ee1f5299a84bf612b9.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/b272fec7783daa63f32c.jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/bb202b3eaec47c9a25d5.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/bf1e22b0a44a76142f5b.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/ea5473c5f53f27617e2e.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/ee106392e56837366e79.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/f88d2214a4ee76b02fff.jpg','cham_diem_yolov8', 640, 0.25, 0.45]] | |
# Load YOLO model | |
# model = YOLO('linhcuem/cham_diem_yolov8') | |
# model = YOLO('linhcuem/chamdiemgianhang_yolov8_300epochs') | |
# model = YOLO('linhcuem/chamdiemgianhang_yolov8_ver21') | |
# model = YOLO('linhcuem/cham_diem_yolov8_ver20') | |
# model_ids = ['linhcuem/checker_TB_yolov8_ver1', 'linhcuem/cham_diem_yolov8', 'linhcuem/chamdiemgianhang_yolov8_300epochs', 'linhcuem/cham_diem_yolov8_ver20', 'linhcuem/chamdiemgianhang_yolov8_ver21'] | |
model_path = download_from_hub('linhcuem/checker_TB_yolov8_ver1') | |
model = YOLO(model_path) | |
# current_model_id = model_ids[-1] | |
# model = YOLO(current_model_id) | |
# model = YOLO(model_path) | |
################################################### | |
def yolov8_img_inference( | |
image: gr.inputs.Image = None, | |
model_path: gr.inputs.Dropdown = None, | |
image_size: gr.inputs.Slider = 640, | |
conf_threshold: gr.inputs.Slider = 0.25, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
# model = YOLO(model_path) | |
model.conf = conf_threshold | |
model.iou = iou_threshold | |
results = model.predict(image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold) | |
render = render_result(model=model, image=image, result=results[0]) | |
# get the model names list | |
names = model.names | |
object_counts = {x: 0 for x in names} | |
for r in results: | |
for c in r.boxes.cls: | |
c = int(c) | |
if c in names: | |
object_counts[c] += 1 | |
elif c not in names: | |
object_counts[c] = 1 | |
present_objects = object_counts.copy() | |
for i in object_counts: | |
if object_counts[i] < 1: | |
present_objects.pop(i) | |
return render, {names[k]: v for k, v in present_objects.items()} | |
def yolov8_vid_inference(video_path): | |
cap = cv2.VideoCapture(video_path) | |
while cap.isOpened(): | |
success, frame = cap.read() | |
if success: | |
frame_copy = frame.copy() | |
outputs = model.predict(source=frame) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
cv2.rectangle( | |
frame_copy, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) | |
inputs_vid = [ | |
gr.components.Video(type="filepath", label="Input Video"), | |
] | |
outputs_vid = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_vid = gr.Interface( | |
fn=yolov8_vid_inference, | |
inputs = inputs_vid, | |
outputs = outputs_vid, | |
title = "Detect Thiên Việt productions", | |
cache_examples = False, | |
) | |
inputs = [ | |
gr.inputs.Image(type="filepath", label="Input Image"), | |
gr.inputs.Dropdown(["linhcuem/checker_TB_yolov8_ver1", "linhcuem/chamdiemgianhang_yolov8_ver21"], | |
default="linhcuem/checker_TB_yolov8_ver1", label="Model"), | |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs =gr.outputs.Image(type="filepath", label="Output Image") | |
# count_obj = gr.Textbox(show_label=False) | |
title = "Detect Thiên Việt productions" | |
interface_image = gr.Interface( | |
fn=yolov8_img_inference, | |
inputs=[ | |
gr.Image(type='pil'), | |
gr.Dropdown(["linhcuem/checker_TB_yolov8_ver1"], | |
default="linhcuem/checker_TB_yolov8_ver1", label="Model"), | |
gr.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), | |
gr.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
gr.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), | |
], | |
outputs=[gr.Image(type="pil"),gr.Textbox(show_label=False)], | |
title=title, | |
examples=image_path, | |
cache_examples=True if image_path else False, | |
) | |
gr.TabbedInterface( | |
[interface_image, interface_vid], | |
tab_names=['Image inference', 'Video inference'] | |
).queue().launch() | |
# demo_app = gr.Interface( | |
# fn=yolov8_img_inference, | |
# inputs=inputs, | |
# outputs=outputs, | |
# title=title, | |
# examples=image_path, | |
# cache_examples=True, | |
# theme='huggingface', | |
# ) | |
# demo_app.launch(debug=True, enable_queue=True) | |
# interface_image.launch(debug=True, enable_queue=True) |