import json import gradio as gr import yolov5 from PIL import Image from huggingface_hub import hf_hub_download import os app_title = "Detect san pham VSK" models_ids = ['linhcuem/gold_yolov5m','linhcuem/yolov5m_chamdiem_raw13','linhcuem/yolov5m_cham_diemraw15','linhcuem/yolov5m6_raw17_yaml', 'linhcuem/yolov5m_chamdiem_ver1', 'linhcuem/cham_diemraw16', 'linhcuem/yolov5m_chamdiem_ver2', 'linhcuem/yolov5m6_cham_diemraw17','linhcuem/yolov5m_chamdiem_ver7', 'linhcuem/yolov5m_chamdiem_ver8', 'linhcuem/yolov5m_chamdiem_ver10', 'linhcuem/yolov5_chamdiem_ver9', 'linhcuem/yolo5m_chamdiem_ver11', 'linhcuem/yolov5_chamdiem_ver12', 'linhcuem/yolov5_chamdiem_ver15_300epochs', 'linhcuem/yolov5_chamdiem_ver15', 'linhcuem/yolov5_chamdiem_ver13', 'linhcuem/yolov5_chamdiem_ver17', 'linhcuem/yolov5_chamdiem_ver16'] current_model_id = models_ids[-1] model = yolov5.load(current_model_id) examples = [['test_images/yen thien viet_4.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_6.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_7.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_7.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_8.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_9.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_94.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_13.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_16.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_19.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_13.jpg', 0.25, 'linhcuem/gold_yolov5m']] def predict(image, threshold=0.25, model_id=None): #update model if required global current_model_id global model if model_id != current_model_id: model = yolov5.load(model_id) # model_yolov8 = YOLO(DEFAULT_DET_MODEL_ID_yolov8) current_model_id = model_id # get model input size config_path = hf_hub_download(repo_id=model_id, filename="config.json") with open(config_path, "r") as f: config = json.load(f) input_size = config["input_size"] #perform inference model.conf = threshold results = model(image, size=input_size) numpy_image = results.render()[0] output_image = Image.fromarray(numpy_image) return output_image gr.Interface( title=app_title, description="DO ANH DAT", fn=predict, inputs=[ gr.Image(type="pil"), gr.Slider(maximum=1, step=0.01, value=0.25), gr.Dropdown(models_ids, value=models_ids[-1]), ], outputs=gr.Image(type="pil"), examples=examples, cache_examples=True if examples else Fale, ).launch(enable_queue=True)