Spaces:
Sleeping
Sleeping
import json | |
import gradio as gr | |
import yolov5 | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import os | |
import cv2 | |
app_title = "Detect san pham VSK" | |
models_ids = ['linhcuem/gold_yolov5m','linhcuem/yolov5m_chamdiem_raw13','linhcuem/yolov5m_cham_diemraw15','linhcuem/yolov5m6_raw17_yaml', 'linhcuem/yolov5m_chamdiem_ver1', | |
'linhcuem/cham_diemraw16', 'linhcuem/yolov5m_chamdiem_ver2', 'linhcuem/yolov5m6_cham_diemraw17','linhcuem/yolov5m_chamdiem_ver7', 'linhcuem/yolov5m_chamdiem_ver8', 'linhcuem/yolov5m_chamdiem_ver10', | |
'linhcuem/yolov5_chamdiem_ver9', 'linhcuem/yolo5m_chamdiem_ver11', 'linhcuem/yolov5_chamdiem_ver12', 'linhcuem/yolov5_chamdiem_ver15_300epochs', 'linhcuem/yolov5_chamdiem_ver15', 'linhcuem/yolov5_chamdiem_ver13', | |
'linhcuem/yolov5_chamdiem_ver17', 'linhcuem/yolov5_chamdiem_ver16', 'linhcuem/yolov5_chamdiem_ver18'] | |
current_model_id = models_ids[-1] | |
model = yolov5.load(current_model_id) | |
examples = [['test_images/yen thien viet_4.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_6.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_7.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_7.jpg', 0.25, 'linhcuem/gold_yolov5m'], | |
['test_images/yen thien viet_8.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_9.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_94.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_13.jpg', 0.25, 'linhcuem/gold_yolov5m'], | |
['test_images/yen thien viet_16.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_19.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_13.jpg', 0.25, 'linhcuem/gold_yolov5m']] | |
def predict(image, threshold=0.25, model_id=None): | |
#update model if required | |
global current_model_id | |
global model | |
if model_id != current_model_id: | |
model = yolov5.load(model_id) | |
# model_yolov8 = YOLO(DEFAULT_DET_MODEL_ID_yolov8) | |
current_model_id = model_id | |
# get model input size | |
config_path = hf_hub_download(repo_id=model_id, filename="config.json") | |
with open(config_path, "r") as f: | |
config = json.load(f) | |
input_size = config["input_size"] | |
#perform inference | |
model.conf = threshold | |
results = model(image, size=input_size) | |
count_result = results.pandas().xyxy[0].value_counts('name') | |
numpy_image = results.render()[0] | |
output_image = Image.fromarray(numpy_image) | |
return output_image, count_result | |
def show_pred_vid( | |
video_path: str = None, | |
model_path: str = None, | |
image_size: int = 640, | |
conf_threshold: float = 0.25, | |
iou_threshold: float = 0.45, | |
): | |
cap = cv2.VideoCapture(video_path) | |
while cap.isOpened(): | |
success, frame = cap.read() | |
if success: | |
model = YOLO(model_path) | |
model.overrides['conf'] = conf_threshold | |
model.overrides['iou'] = iou_threshold | |
model.overrides['agnostic_nms'] = False | |
model.overrides['max_det'] = 1000 | |
results = model.predict(frame) | |
annotated_frame = results[0].plot() | |
if cv2.waitKey(1) & 0xFF == ord("q"): | |
break | |
else: | |
break | |
cap.release() | |
cv2.destroyAllWindows() | |
inputs_vid = [ | |
gr.components.Video(type="filepath", label="Input Video"), | |
gr.inputs.Dropdown(["linhcuem/yolov5_chamdiem_ver13"], default="linhcuem/yolov5_chamdiem_ver13", label="Model"), | |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label= "Image Size"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs_vid = gr.outputs.Image(type="filepath", label="Output Video") | |
interface_vid = gr.Interface( | |
fn=show_pred_vid, | |
inputs = inputs_vid, | |
outputs = outputs_vid, | |
title = app_title, | |
description=description, | |
cache_examples=False, | |
theme='huggingface' | |
) | |
interface_image = gr.Interface( | |
title=app_title, | |
description="DO ANH DAT", | |
fn=predict, | |
inputs=[ | |
gr.Image(type="pil"), | |
gr.Slider(maximum=1, step=0.01, value=0.25), | |
gr.Dropdown(models_ids, value=models_ids[-1]), | |
], | |
outputs=[gr.Image(type="pil"),gr.Textbox(show_label=False)], | |
examples=examples, | |
cache_examples=True if examples else Fale, | |
) | |
gr.TabbedInterface( | |
[interface_image, interface_vid], | |
tab_names=['Image inferece', 'Video inference'] | |
).launch() | |