Spaces:
Sleeping
Sleeping
import json | |
import gradio as gr | |
import yolov5 | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import os | |
app_title = "Detect san pham VSK" | |
models_ids = ['linhcuem/gold_yolov5m','linhcuem/yolov5m_cham_diem_raw14','linhcuem/yolov5m_chamdiem_raw13','linhcuem/yolov5m_cham_diemraw15','linhcuem/yolov5m_data_aHieu', 'linhcuem/yolov5m_aHieu_ver15','linhcuem/yolov5m6_raw17_yaml', 'linhcuem/yolov5m_chamdiem_ver1', | |
'linhcuem/cham_diemraw16', 'linhcuem/yolov5m_chamdiem_ver2', 'linhcuem/yolov5m6_cham_diemraw17'] | |
current_model_id = models_ids[-1] | |
model = yolov5.load(current_model_id) | |
examples = [['test_images/yen thien viet_4.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_6.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_7.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_7.jpg', 0.25, 'linhcuem/gold_yolov5m'], | |
['test_images/yen thien viet_8.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_9.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_94.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_13.jpg', 0.25, 'linhcuem/gold_yolov5m'], | |
['test_images/yen thien viet_16.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_19.jpg', 0.25, 'linhcuem/gold_yolov5m'], ['test_images/yen thien viet_13.jpg', 0.25, 'linhcuem/gold_yolov5m']] | |
def predict(image, threshold=0.25, model_id=None): | |
#update model if required | |
global current_model_id | |
global model | |
if model_id != current_model_id: | |
model = yolov5.load(model_id) | |
# model_yolov8 = YOLO(DEFAULT_DET_MODEL_ID_yolov8) | |
current_model_id = model_id | |
# get model input size | |
config_path = hf_hub_download(repo_id=model_id, filename="config.json") | |
with open(config_path, "r") as f: | |
config = json.load(f) | |
input_size = config["input_size"] | |
#perform inference | |
model.conf = threshold | |
results = model(image, size=input_size) | |
numpy_image = results.render()[0] | |
output_image = Image.fromarray(numpy_image) | |
return output_image | |
gr.Interface( | |
title=app_title, | |
description="DO ANH DAT", | |
fn=predict, | |
inputs=[ | |
gr.Image(type="pil"), | |
gr.Slider(maximum=1, step=0.01, value=0.25), | |
gr.Dropdown(models_ids, value=models_ids[-1]), | |
], | |
outputs=gr.Image(type="pil"), | |
examples=examples, | |
cache_examples=True if examples else Fale, | |
).launch(enable_queue=True) | |