create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import monai
|
6 |
+
import morphsnakes as ms
|
7 |
+
from utils.sliding_window import sw_inference
|
8 |
+
from utils.tumor_features import generate_features
|
9 |
+
from monai.networks.nets import SegResNetVAE
|
10 |
+
from monai.transforms import (
|
11 |
+
LoadImage, Orientation, Compose, ToTensor, Activations,
|
12 |
+
FillHoles, KeepLargestConnectedComponent, AsDiscrete, ScaleIntensityRange
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
# global params
|
17 |
+
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
|
18 |
+
examples_path = [
|
19 |
+
os.path.join(THIS_DIR, 'examples', 'HCC_003.nrrd'),
|
20 |
+
os.path.join(THIS_DIR, 'examples', 'HCC_006.nrrd'),
|
21 |
+
os.path.join(THIS_DIR, 'examples', 'HCC_007.nrrd'),
|
22 |
+
os.path.join(THIS_DIR, 'examples', 'HCC_018.nrrd')
|
23 |
+
]
|
24 |
+
models_path = {
|
25 |
+
"liver": os.path.join(THIS_DIR, 'checkpoints', 'liver_3DSegResNetVAE.pth'),
|
26 |
+
"tumor": os.path.join(THIS_DIR, 'checkpoints', 'tumor_3DSegResNetVAE_weak_morp.pth')
|
27 |
+
}
|
28 |
+
cache_path = {
|
29 |
+
"liver mask": "liver_mask.npy",
|
30 |
+
"tumor mask": "tumor_mask.npy"
|
31 |
+
}
|
32 |
+
device = "cpu"
|
33 |
+
mydict = {}
|
34 |
+
|
35 |
+
|
36 |
+
def render(image_name, x, selected_slice):
|
37 |
+
|
38 |
+
if not isinstance(image_name, str) or '/' in image_name:
|
39 |
+
image_name = image_name.name.split('/')[-1].replace(".nrrd","")
|
40 |
+
|
41 |
+
if 'img' not in mydict[image_name].keys():
|
42 |
+
return (np.zeros((512, 512)), []), f'z-value: {x}, (zmin: {None}, zmax: {None})'
|
43 |
+
|
44 |
+
# set slider ranges
|
45 |
+
zmin, zmax = 0, mydict[image_name]['img'].shape[-1] - 1
|
46 |
+
if x > zmax: x = zmax
|
47 |
+
if x < zmin: x = zmin
|
48 |
+
|
49 |
+
# image
|
50 |
+
img = mydict[image_name]['img'][:,:,x]
|
51 |
+
img = (img - np.min(img)) / (np.max(img) - np.min(img)) # scale to 0 and 1
|
52 |
+
|
53 |
+
# masks
|
54 |
+
annotations = []
|
55 |
+
if 'liver mask' in mydict[image_name].keys():
|
56 |
+
annotations.append((mydict[image_name]['liver mask'][:,:,x], "segmented liver"))
|
57 |
+
if 'tumor mask' in mydict[image_name].keys():
|
58 |
+
annotations.append((mydict[image_name]['tumor mask'][:,:,x], "segmented tumor"))
|
59 |
+
|
60 |
+
return img, annotations
|
61 |
+
|
62 |
+
|
63 |
+
def load_liver_model():
|
64 |
+
|
65 |
+
liver_model = SegResNetVAE(
|
66 |
+
input_image_size=(512,512,16),
|
67 |
+
vae_estimate_std=False,
|
68 |
+
vae_default_std=0.3,
|
69 |
+
vae_nz=256,
|
70 |
+
spatial_dims=3,
|
71 |
+
blocks_down=[1, 2, 2, 4],
|
72 |
+
blocks_up=[1, 1, 1],
|
73 |
+
init_filters=16,
|
74 |
+
in_channels=1,
|
75 |
+
norm='instance',
|
76 |
+
out_channels=2,
|
77 |
+
dropout_prob=0.2,
|
78 |
+
)
|
79 |
+
|
80 |
+
liver_model.load_state_dict(torch.load(models_path['liver'], map_location=torch.device(device)))
|
81 |
+
|
82 |
+
return liver_model
|
83 |
+
|
84 |
+
|
85 |
+
def load_tumor_model():
|
86 |
+
|
87 |
+
tumor_model = SegResNetVAE(
|
88 |
+
input_image_size=(256,256,32),
|
89 |
+
vae_estimate_std=False,
|
90 |
+
vae_default_std=0.3,
|
91 |
+
vae_nz=256,
|
92 |
+
spatial_dims=3,
|
93 |
+
blocks_down=[1, 2, 2, 4],
|
94 |
+
blocks_up=[1, 1, 1],
|
95 |
+
init_filters=16,
|
96 |
+
in_channels=1,
|
97 |
+
norm='instance',
|
98 |
+
out_channels=3,
|
99 |
+
dropout_prob=0.2,
|
100 |
+
)
|
101 |
+
|
102 |
+
tumor_model.load_state_dict(torch.load(models_path['tumor'], map_location=torch.device('cpu')))
|
103 |
+
|
104 |
+
return tumor_model
|
105 |
+
|
106 |
+
|
107 |
+
def load_image(image, slider, selected_slice):
|
108 |
+
|
109 |
+
global mydict
|
110 |
+
|
111 |
+
image_name = image.name.split('/')[-1].replace(".nrrd","")
|
112 |
+
mydict = {image_name: {}}
|
113 |
+
|
114 |
+
preprocessing_liver = Compose([
|
115 |
+
# load image
|
116 |
+
LoadImage(reader="NrrdReader", ensure_channel_first=True),
|
117 |
+
# ensure orientation
|
118 |
+
Orientation(axcodes="PLI"),
|
119 |
+
# convert to tensor
|
120 |
+
ToTensor()
|
121 |
+
])
|
122 |
+
|
123 |
+
input = preprocessing_liver(image.name)
|
124 |
+
mydict[image_name]["img"] = input[0].numpy() # first channel
|
125 |
+
|
126 |
+
print("Loaded image", image_name)
|
127 |
+
|
128 |
+
image, annotations = render(image_name, slider, selected_slice)
|
129 |
+
|
130 |
+
return f"Your image is successfully loaded! Please use the slider to view the image (zmin: 1, zmax: {input.shape[-1]}).", (image, annotations)
|
131 |
+
|
132 |
+
|
133 |
+
def segment_tumor(image_name):
|
134 |
+
|
135 |
+
if os.path.isfile(f"cache/{image_name}_{cache_path['tumor mask']}"):
|
136 |
+
mydict[image_name]['tumor mask'] = np.load(f"cache/{image_name}_{cache_path['tumor mask']}")
|
137 |
+
|
138 |
+
if 'tumor mask' in mydict[image_name].keys() and mydict[image_name]['tumor mask'] is not None:
|
139 |
+
return
|
140 |
+
|
141 |
+
input = torch.from_numpy(mydict[image_name]['img'])
|
142 |
+
|
143 |
+
tumor_model = load_tumor_model()
|
144 |
+
|
145 |
+
preprocessing_tumor = Compose([
|
146 |
+
ScaleIntensityRange(a_min=-200, a_max=250, b_min=0.0, b_max=1.0, clip=True)
|
147 |
+
])
|
148 |
+
|
149 |
+
postprocessing_tumor = Compose([
|
150 |
+
Activations(sigmoid=True),
|
151 |
+
# Convert to binary predictions
|
152 |
+
AsDiscrete(argmax=True, to_onehot=3),
|
153 |
+
# Remove small connected components for 1=liver and 2=tumor
|
154 |
+
KeepLargestConnectedComponent(applied_labels=[2]),
|
155 |
+
# Fill holes in the binary mask for 1=liver and 2=tumor
|
156 |
+
FillHoles(applied_labels=[2]),
|
157 |
+
ToTensor()
|
158 |
+
])
|
159 |
+
|
160 |
+
# Preprocessing
|
161 |
+
input = preprocessing_tumor(input)
|
162 |
+
input = torch.multiply(input, torch.from_numpy(mydict[image_name]['liver mask'])) # mask non-liver regions
|
163 |
+
|
164 |
+
# Generate segmentation
|
165 |
+
with torch.no_grad():
|
166 |
+
segmented_mask = sw_inference(tumor_model, input[None, None, :], (256,256,32), False, discard_second_output=True, overlap=0.2)[0] # input dimensions [B,C,H,W,Z]
|
167 |
+
|
168 |
+
# Postprocess image
|
169 |
+
segmented_mask = postprocessing_tumor(segmented_mask)[-1].numpy() # background, liver, tumor
|
170 |
+
segmented_mask = ms.morphological_chan_vese(segmented_mask, iterations=2, init_level_set=segmented_mask)
|
171 |
+
segmented_mask = np.multiply(segmented_mask, mydict[image_name]['liver mask']) # Mask regions outside liver
|
172 |
+
mydict[image_name]["tumor mask"] = segmented_mask
|
173 |
+
|
174 |
+
# Saving
|
175 |
+
np.save(f"cache/{image_name}_{cache_path['tumor mask']}", mydict[image_name]["tumor mask"])
|
176 |
+
print(f"tumor mask saved to 'cache/{image_name}_{cache_path['tumor mask']}")
|
177 |
+
|
178 |
+
return
|
179 |
+
|
180 |
+
|
181 |
+
def segment_liver(image_name):
|
182 |
+
|
183 |
+
if os.path.isfile(f"cache/{image_name}_{cache_path['liver mask']}"):
|
184 |
+
mydict[image_name]['liver mask'] = np.load(f"cache/{image_name}_{cache_path['liver mask']}")
|
185 |
+
|
186 |
+
if 'liver mask' in mydict[image_name].keys() and mydict[image_name]['liver mask'] is not None:
|
187 |
+
return
|
188 |
+
|
189 |
+
input = torch.from_numpy(mydict[image_name]['img'])
|
190 |
+
|
191 |
+
# load model
|
192 |
+
liver_model = load_liver_model()
|
193 |
+
|
194 |
+
# HU Windowing
|
195 |
+
preprocessing_liver = Compose([
|
196 |
+
ScaleIntensityRange(a_min=-150, a_max=250, b_min=0.0, b_max=1.0, clip=True)
|
197 |
+
])
|
198 |
+
|
199 |
+
postprocessing_liver = Compose([
|
200 |
+
# Apply softmax activation to convert logits to probabilities
|
201 |
+
Activations(sigmoid=True),
|
202 |
+
# Convert predicted probabilities to discrete values (0 or 1)
|
203 |
+
AsDiscrete(argmax=True, to_onehot=None),
|
204 |
+
# Remove small connected components for 1=liver and 2=tumor
|
205 |
+
KeepLargestConnectedComponent(applied_labels=[1]),
|
206 |
+
# Fill holes in the binary mask for 1=liver and 2=tumor
|
207 |
+
FillHoles(applied_labels=[1]),
|
208 |
+
ToTensor()
|
209 |
+
])
|
210 |
+
|
211 |
+
# Preprocessing
|
212 |
+
input = preprocessing_liver(input)
|
213 |
+
|
214 |
+
# Generate segmentation
|
215 |
+
with torch.no_grad():
|
216 |
+
segmented_mask = sw_inference(liver_model, input[None, None, :], (512,512,16), False, discard_second_output=True, overlap=0.2)[0] # input dimensions [B,C,H,W,Z]
|
217 |
+
|
218 |
+
# Postprocess image
|
219 |
+
segmented_mask = postprocessing_liver(segmented_mask)[0].numpy() # first channel
|
220 |
+
mydict[image_name]["liver mask"] = segmented_mask
|
221 |
+
print(f"liver mask shape: {segmented_mask.shape}")
|
222 |
+
|
223 |
+
# Saving
|
224 |
+
np.save(f"cache/{image_name}_{cache_path['liver mask']}", mydict[image_name]["liver mask"])
|
225 |
+
print(f"liver mask saved to cache/{image_name}_{cache_path['liver mask']}")
|
226 |
+
|
227 |
+
return
|
228 |
+
|
229 |
+
|
230 |
+
def segment(image, selected_mask, slider, selected_slice):
|
231 |
+
|
232 |
+
image_name = image.name.split('/')[-1].replace(".nrrd", "")
|
233 |
+
download_liver = gr.DownloadButton(label="Download liver mask", visible = False)
|
234 |
+
download_tumor = gr.DownloadButton(label="Download tumor mask", visible = False)
|
235 |
+
|
236 |
+
if 'liver mask' in selected_mask:
|
237 |
+
print('Segmenting liver...')
|
238 |
+
segment_liver(image_name)
|
239 |
+
download_liver = gr.DownloadButton(label="Download liver mask", value=f"cache/{image_name}_{cache_path['liver mask']}", visible=True)
|
240 |
+
|
241 |
+
if 'tumor mask' in selected_mask:
|
242 |
+
print('Segmenting tumor...')
|
243 |
+
segment_tumor(image_name)
|
244 |
+
download_tumor = gr.DownloadButton(label="Download tumor mask", value=f"cache/{image_name}_{cache_path['tumor mask']}", visible=True)
|
245 |
+
|
246 |
+
image, annotations = render(image, slider, selected_slice)
|
247 |
+
|
248 |
+
return f"Segmentation is completed! ", download_liver, download_tumor, (image, annotations)
|
249 |
+
|
250 |
+
|
251 |
+
def generate_summary(image):
|
252 |
+
image_name = image.name.split('/')[-1].replace(".nrrd","")
|
253 |
+
features = generate_features(mydict[image_name]["img"], mydict[image_name]["liver mask"], mydict[image_name]["tumor mask"])
|
254 |
+
print(features)
|
255 |
+
|
256 |
+
return ""
|
257 |
+
|
258 |
+
|
259 |
+
with gr.Blocks() as app:
|
260 |
+
with gr.Column():
|
261 |
+
gr.Markdown(
|
262 |
+
"""
|
263 |
+
# Lung Tumor Segmentation App
|
264 |
+
|
265 |
+
This tool is designed to assist in the identification and segmentation of lung and tumor from medical images. By uploading a CT scan image, a pre-trained machine learning model will automatically segment the lung and tumor regions. Segmented tumor's characteristics such as shape, size, and location are then analyzed to produce an AI-generated diagnosis report of the lung cancer.
|
266 |
+
|
267 |
+
⚠️ Important disclaimer: these model outputs should NOT replace the medical diagnosis of healthcare professionals. For your reference, our model was trained on the [HCC-TACE-Seg dataset](https://www.cancerimagingarchive.net/collection/hcc-tace-seg/) and achieved 0.954 dice score for lung segmentation and 0.570 dice score for tumor segmentation. Improving tumor segmentation is still an active area of research!
|
268 |
+
""")
|
269 |
+
|
270 |
+
with gr.Row():
|
271 |
+
comment = gr.Textbox(label='Your tool guide:', value="👋 Hi there, welcome to explore the power of AI for automated medical image analysis with our user-friendly app! Start by uploading a CT scan image. Note that for now we accept .nrrd formats only.")
|
272 |
+
|
273 |
+
|
274 |
+
with gr.Row():
|
275 |
+
|
276 |
+
with gr.Column(scale=2):
|
277 |
+
image_file = gr.File(label="Step 1: Upload a CT image (.nrrd)", file_count='single', file_types=['.nrrd'], type='filepath')
|
278 |
+
btn_upload = gr.Button("Upload")
|
279 |
+
|
280 |
+
with gr.Column(scale=2):
|
281 |
+
selected_mask = gr.CheckboxGroup(label='Step 2: Select mask to produce', choices=['liver mask', 'tumor mask'], value = ['liver mask'])
|
282 |
+
btn_segment = gr.Button("Segment")
|
283 |
+
|
284 |
+
with gr.Row():
|
285 |
+
slider = gr.Slider(1, 100, step=1, label="Slice (z)")
|
286 |
+
selected_slice = gr.State(value=1)
|
287 |
+
|
288 |
+
with gr.Row():
|
289 |
+
myimage = gr.AnnotatedImage(label="Image Viewer", height=1000, width=1000, color_map={"segmented liver": "#0373fc", "segmented tumor": "#eb5334"})
|
290 |
+
|
291 |
+
with gr.Row():
|
292 |
+
with gr.Column(scale=2):
|
293 |
+
btn_download_liver = gr.DownloadButton("Download liver mask", visible=False)
|
294 |
+
with gr.Column(scale=2):
|
295 |
+
btn_download_tumor = gr.DownloadButton("Download tumor mask", visible=False)
|
296 |
+
|
297 |
+
with gr.Row():
|
298 |
+
report = gr.Textbox(label='Step 4. Generate summary report using AI:')
|
299 |
+
|
300 |
+
with gr.Row():
|
301 |
+
btn_report = gr.Button("Generate summary")
|
302 |
+
|
303 |
+
|
304 |
+
gr.Examples(
|
305 |
+
examples_path,
|
306 |
+
[image_file],
|
307 |
+
)
|
308 |
+
|
309 |
+
btn_upload.click(fn=load_image,
|
310 |
+
inputs=[image_file, slider, selected_slice],
|
311 |
+
outputs=[comment, myimage],
|
312 |
+
)
|
313 |
+
|
314 |
+
btn_segment.click(fn=segment,
|
315 |
+
inputs=[image_file, selected_mask, slider, selected_slice],
|
316 |
+
outputs=[comment, btn_download_liver, btn_download_tumor, myimage],
|
317 |
+
)
|
318 |
+
|
319 |
+
slider.change(
|
320 |
+
render,
|
321 |
+
inputs=[image_file, slider, selected_slice],
|
322 |
+
outputs=[myimage]
|
323 |
+
)
|
324 |
+
|
325 |
+
btn_report.click(fn=generate_summary,
|
326 |
+
outputs=report
|
327 |
+
)
|
328 |
+
|
329 |
+
|
330 |
+
app.launch()
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
|