import gradio as gr import modin.pandas as pd import torch import numpy as np from PIL import Image from diffusers import DiffusionPipeline from huggingface_hub import login #import os #login(token=os.environ.get('HF_KEY')) device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("segmind/SSD-1B", torch_dtype=torch.float16) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0") pipe = pipe.to(device) def resize(height, width, img): img = Image.open(img) img = img.resize((height, width)) return img def infer(source_img, prompt, negative_prompt, height, width, guide, steps, seed, strength): generator = torch.Generator(device).manual_seed(seed) source_image = resize(height, width, source_img) source_image.save('source.png') image = pipe(prompt, negative_prompt=negative_prompt, image=source_image, strength=strength, guidance_scale=guide, num_inference_steps=steps).images[0] return image gr.Interface(fn=infer, inputs=[ gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"), gr.Textbox(label='Что вы хотите, чтобы ИИ генерировал'), gr.Textbox(label='Что вы не хотите, чтобы ИИ генерировал'), gr.Slider(512, 1024, 768, step=1, label='Ширина картинки'), gr.Slider(512, 1024, 768, step=1, label='Высота картинки'), gr.Slider(2, 15, value=7, label='Шкала расхождения'), gr.Slider(1, 25, value=10, step=1, label='Количество итераций'), gr.Slider(label="Зерно", minimum=0, maximum=987654321987654321, step=1, randomize=True), gr.Slider(label='Сила', minimum=0, maximum=1, step=.05, value=.5), ], outputs='image', title = "Стабильная Диффузия - Dreamlike-Photoreal-2.0",article = "




").launch(debug=True, max_threads=80)