from __future__ import annotations import os os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" import gradio as gr from llama_cpp import Llama llm = Llama.from_pretrained( repo_id="matteogeniaccio/phi-4", filename="phi-4-Q4_K_M.gguf", verbose=True ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # 构造消息内容 messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) # 使用llama-cpp-python的方式生成响应 response = llm.create_chat_completion( messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True ) # 流式响应处理 partial_message = "" for chunk in response: if chunk and chunk.get("choices") and chunk["choices"][0].get("delta", {}).get("content"): content = chunk["choices"][0]["delta"]["content"] partial_message += content yield partial_message # Gradio 界面 with gr.Blocks() as demo: gr.Markdown("You must be logged in to use GGUF-my-lora.") gr.LoginButton(min_width=250) gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], ) if __name__ == "__main__": demo.launch()