|
from __future__ import annotations |
|
import os |
|
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" |
|
import gradio as gr |
|
from llama_cpp import Llama |
|
|
|
llm = Llama.from_pretrained( |
|
repo_id="matteogeniaccio/phi-4", |
|
filename="phi-4-Q4_K_M.gguf", |
|
verbose=True |
|
) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
for user_msg, assistant_msg in history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if assistant_msg: |
|
messages.append({"role": "assistant", "content": assistant_msg}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = llm.create_chat_completion( |
|
messages=messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
stream=True |
|
) |
|
|
|
|
|
partial_message = "" |
|
for chunk in response: |
|
if chunk and chunk.get("choices") and chunk["choices"][0].get("delta", {}).get("content"): |
|
content = chunk["choices"][0]["delta"]["content"] |
|
partial_message += content |
|
yield partial_message |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("You must be logged in to use GGUF-my-lora.") |
|
gr.LoginButton(min_width=250) |
|
gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)" |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |