Spaces:
Runtime error
Runtime error
feat: add label to input component
Browse files
app.py
CHANGED
@@ -19,6 +19,15 @@ model.load_state_dict(torch.load("./bin/model.ckpt", map_location=device)["state
|
|
19 |
|
20 |
|
21 |
def augment(img: np.ndarray) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
img = Image.fromarray(img)
|
23 |
if img.mode == "L":
|
24 |
# Convert grayscale image to RGB by duplicating the single channel three times
|
@@ -31,14 +40,26 @@ def augment(img: np.ndarray) -> torch.Tensor:
|
|
31 |
return transforms(img).unsqueeze(0)
|
32 |
|
33 |
|
34 |
-
def search_index(input_image, k: int = 1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
with torch.no_grad():
|
36 |
embedding = model(augment(input_image).to(device))
|
37 |
index = read_index("./bin/dino.index")
|
38 |
_, results = index.search(np.array(embedding[0].reshape(1, -1)), k)
|
39 |
indices = results[0]
|
40 |
-
|
41 |
-
for i, index in enumerate(indices[:k]):
|
42 |
retrieved_img = dataset["train"][int(index)]["image"]
|
43 |
images.append(retrieved_img)
|
44 |
return images
|
@@ -47,7 +68,7 @@ def search_index(input_image, k: int = 1):
|
|
47 |
app = gr.Interface(
|
48 |
search_index,
|
49 |
inputs=[
|
50 |
-
gr.Image(),
|
51 |
gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Top K"),
|
52 |
],
|
53 |
outputs=[
|
|
|
19 |
|
20 |
|
21 |
def augment(img: np.ndarray) -> torch.Tensor:
|
22 |
+
"""
|
23 |
+
Helper Function to augment the image before we generate embeddings
|
24 |
+
|
25 |
+
Args:
|
26 |
+
img (np.ndarray): Input Image
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
torch.Tensor
|
30 |
+
"""
|
31 |
img = Image.fromarray(img)
|
32 |
if img.mode == "L":
|
33 |
# Convert grayscale image to RGB by duplicating the single channel three times
|
|
|
40 |
return transforms(img).unsqueeze(0)
|
41 |
|
42 |
|
43 |
+
def search_index(input_image: np.ndarray, k: int = 1) -> list:
|
44 |
+
"""
|
45 |
+
Retrieve the Top k images from the given input image
|
46 |
+
|
47 |
+
Args:
|
48 |
+
input_image (np.ndarray): Input Image
|
49 |
+
k (int): number of images to fetch
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
list: List of top k images retrieved using the embeddings
|
53 |
+
generated from the input image
|
54 |
+
"""
|
55 |
+
images = []
|
56 |
+
|
57 |
with torch.no_grad():
|
58 |
embedding = model(augment(input_image).to(device))
|
59 |
index = read_index("./bin/dino.index")
|
60 |
_, results = index.search(np.array(embedding[0].reshape(1, -1)), k)
|
61 |
indices = results[0]
|
62 |
+
for _, index in enumerate(indices[:k]):
|
|
|
63 |
retrieved_img = dataset["train"][int(index)]["image"]
|
64 |
images.append(retrieved_img)
|
65 |
return images
|
|
|
68 |
app = gr.Interface(
|
69 |
search_index,
|
70 |
inputs=[
|
71 |
+
gr.Image(label="Input Image"),
|
72 |
gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Top K"),
|
73 |
],
|
74 |
outputs=[
|