Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
import torch | |
import numpy as np | |
import gradio as gr | |
from faiss import read_index | |
from PIL import Image, ImageOps | |
from datasets import load_dataset | |
import torchvision.transforms as T | |
from model import DINO | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
## Define Model and Dataset | |
dataset = load_dataset("ethz/food101") | |
model = DINO(batch_size_per_device=32, num_classes=1000).to(device) | |
model.load_state_dict(torch.load("./bin/model.ckpt", map_location=device)["state_dict"]) | |
def augment(img: np.ndarray) -> torch.Tensor: | |
""" | |
Helper Function to augment the image before we generate embeddings | |
Args: | |
img (np.ndarray): Input Image | |
Returns: | |
torch.Tensor | |
""" | |
img = Image.fromarray(img) | |
if img.mode == "L": | |
# Convert grayscale image to RGB by duplicating the single channel three times | |
img = ImageOps.colorize(img, black="black", white="white") | |
transforms = T.Compose( | |
[T.ToTensor(), T.Resize(244), T.CenterCrop(224), T.Normalize([0.5], [0.5])] | |
) | |
return transforms(img).unsqueeze(0) | |
def search_index(input_image: np.ndarray, k: int = 1) -> list: | |
""" | |
Retrieve the Top k images from the given input image | |
Args: | |
input_image (np.ndarray): Input Image | |
k (int): number of images to fetch | |
Returns: | |
list: List of top k images retrieved using the embeddings | |
generated from the input image | |
""" | |
images = [] | |
with torch.no_grad(): | |
embedding = model(augment(input_image).to(device)) | |
index = read_index("./bin/dino.index") | |
_, results = index.search(np.array(embedding[0].reshape(1, -1)), k) | |
indices = results[0] | |
for _, index in enumerate(indices[:k]): | |
retrieved_img = dataset["train"][int(index)]["image"] | |
images.append(retrieved_img) | |
return images | |
app = gr.Interface( | |
search_index, | |
inputs=[ | |
gr.Image(label="Input Image"), | |
gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Top K"), | |
], | |
outputs=[ | |
gr.Gallery(label="Retrieved Images"), | |
], | |
article="## To read more about the development of the app please refer to the [Lightly AI blogpost on Vector Indexes and Image Retrieval](http://www.lightly.ai/post/vector-indexes-and-image-retrieval-using-lightly)", | |
) | |
if __name__ == "__main__": | |
app.launch() | |