Spaces:
Runtime error
Runtime error
liewchooichin
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gradio
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Hugging Face libraries
|
5 |
+
from transformers import pipeline
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
+
# Model checkpoint
|
9 |
+
model_checkpoint = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
10 |
+
|
11 |
+
# Instantiate the pipeline
|
12 |
+
ner_task = pipeline(model=model_checkpoint, task="ner",
|
13 |
+
aggregation_strategy="simple")
|
14 |
+
|
15 |
+
# Instantiate the tokenizer
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
17 |
+
|
18 |
+
# Sample sentences
|
19 |
+
sentence1 = "Herbert Akroyd Stuart patented the first diesel engine, 1890"
|
20 |
+
sentence2 = "May 10 A delegation tells Leopold III his return would be \
|
21 |
+
illtimed, 1945"
|
22 |
+
sentence3 = "Fri May 10 Fred Astaire (Frederick Austerlitz) born in Omaha, Nebraska, 1899"
|
23 |
+
sentence4 = "Fri May 10 Germany invades Low Countries, 1940"
|
24 |
+
sentence5 = "Fri May 10 Nazi bookburning, 1933"
|
25 |
+
sentence6 = "Fri May 10 Confederate Memorial Day in South Carolina"
|
26 |
+
sentence7 = "Fri May 10 Mothers Day in Guatemala"
|
27 |
+
sentence8 = "Fri May 10 Dave Mason is born in Worcester, England, 1945"
|
28 |
+
|
29 |
+
|
30 |
+
# Gradio interface
|
31 |
+
def predict(sentence):
|
32 |
+
"""
|
33 |
+
Use the corresponding tokenizer to tokenize the sentence.
|
34 |
+
Use the model to predict the entities.
|
35 |
+
"""
|
36 |
+
# Get the tokens from the tokenizer
|
37 |
+
processed_tokens = tokenizer(sentence)
|
38 |
+
token_pieces = processed_tokens.tokens()
|
39 |
+
|
40 |
+
# Get the prediction of ner from the model
|
41 |
+
result_ner = ner_task(sentence)
|
42 |
+
formatted_ner = f"Number of predicted entities: {len(result_ner)}\n\n"
|
43 |
+
# Print individual entities.
|
44 |
+
# Start the count from 1 for intuitive reading.
|
45 |
+
for i, result in enumerate(result_ner):
|
46 |
+
formatted_ner += f"Number: {i+1} \n" \
|
47 |
+
+ f"Entity: {result['entity_group']}\n" \
|
48 |
+
+ f"Word group: {result['word']}\n" \
|
49 |
+
+ f"Score: {result['score']}\n"
|
50 |
+
formatted_ner += f"{result}\n\n"
|
51 |
+
|
52 |
+
return token_pieces, formatted_ner
|
53 |
+
|
54 |
+
# Main Gradio interface
|
55 |
+
demo = gr.Interface(
|
56 |
+
fn = predict,
|
57 |
+
inputs = [gr.TextArea(label="Place your sentence here", lines=10,
|
58 |
+
show_copy_button=True)],
|
59 |
+
outputs =
|
60 |
+
[
|
61 |
+
gr.TextArea(label="Tokens input to the model", interactive=False,
|
62 |
+
lines=10, show_copy_button=True),
|
63 |
+
gr.TextArea(label="Prediction of entities", interactive=False,
|
64 |
+
lines=10, show_copy_button=True)
|
65 |
+
],
|
66 |
+
examples=[[sentence1], [sentence2], [sentence3], [sentence4],
|
67 |
+
[sentence5], [sentence6], [sentence7], [sentence8]],
|
68 |
+
title = "NER (Named Entities Recognition)",
|
69 |
+
description = f"""
|
70 |
+
## Using model {model_checkpoint} to predict entities type
|
71 |
+
<p style="font-size: 1.2rem;">Notes: </p>
|
72 |
+
<ul style="font-size: 1.2rem; list-style-type:square">
|
73 |
+
<li> The examples are from the calendar utility in Linux.
|
74 |
+
<li> The model cannot recognize date and time.
|
75 |
+
<li> It can recongize PER (person), LOC (location), ORG (organization) and MIS (miscellaneous)
|
76 |
+
entities.
|
77 |
+
</ul>
|
78 |
+
"""
|
79 |
+
)
|
80 |
+
demo.launch()
|