import gradio as gr from huggingface_hub import list_spaces from cachetools import TTLCache, cached from toolz import groupby, valmap from diskcache import Cache import platform is_macos = platform.system() == "Darwin" if is_macos: cache = Cache("cache") def cached_decorator(func): return cache.memoize(typed=True, expire=1)(func) else: ttl_cache = TTLCache(maxsize=100, ttl=60 * 10) cached_decorator = cached(cache=ttl_cache) @cached_decorator def get_spaces(): return list(list_spaces(full=True)) get_spaces() # to warm up the cache def create_space_to_like_dict(): spaces = get_spaces() return {space.id: space.likes for space in spaces} def create_org_to_like_dict(): spaces = get_spaces() grouped = groupby(lambda x: x.author, spaces) return valmap(lambda x: sum(s.likes for s in x), grouped) def relative_rank(my_dict, target_key, filter_zero=False): if filter_zero: my_dict = {k: v for k, v in my_dict.items() if v != 0} if target_key not in my_dict: raise gr.Error(f"'{target_key}' not found lease check the ID and try again.") sorted_items = sorted(my_dict.items(), key=lambda item: item[1], reverse=True) position = [key for key, _ in sorted_items].index(target_key) num_lower = len(sorted_items) - position - 1 num_higher = position return { "rank": (num_higher + 1) / len(my_dict) * 100, "num_higher": num_higher, "num_lower": num_lower, } @cached(cache=TTLCache(maxsize=100, ttl=60 * 3)) def relative_rank_for_space(space_id, filter_zero=False): space_to_like_dict = create_space_to_like_dict() return relative_rank(space_to_like_dict, space_id, filter_zero=filter_zero) @cached(cache=TTLCache(maxsize=100, ttl=60 * 3)) def relative_rank_for_org(org_id, filter_zero=False): org_to_like_dict = create_org_to_like_dict() return relative_rank(org_to_like_dict, org_id, filter_zero=filter_zero) @cached(cache=TTLCache(maxsize=100, ttl=60 * 3)) def rank_space(space_id): return relative_rank_for_space(space_id) def rank_space_and_org(space_or_org_id, filter_zero): filter_zero = filter_zero == "yes" split = space_or_org_id.split("/") if len(split) == 2: space_rank = relative_rank_for_space(space_or_org_id, filter_zero=filter_zero) return f"""Space [{space_or_org_id}](https://huggingface.co./spaces/{space_or_org_id}) is ranked {space_rank['rank']:.2f}% with {space_rank['num_higher']:,} Spaces above and {space_rank['num_lower']:,} Spaces below in the raking of Space likes""" if len(split) == 1: org_rank = relative_rank_for_org(space_or_org_id, filter_zero=filter_zero) return f"""Organization or user [{space_or_org_id}](https://huggingface.co./{space_or_org_id}) is ranked {org_rank['rank']:.2f}% with {org_rank['num_higher']:,} orgs/users above and {org_rank['num_lower']:,} orgs/users below in the raking of Space likes""" def get_top_n_orgs_and_users(top_n=100): orgs_to_likes = create_org_to_like_dict() sorted_items = sorted(orgs_to_likes.items(), key=lambda item: item[1], reverse=True) sorted_items = sorted_items[:top_n] return sorted_items def plot_top_n_orgs_and_users(top_n=100): top_n = get_top_n_orgs_and_users(top_n) return "".join( f"\n- [{org}](https://huggingface.co./{org}) with {likes:,} likes" for org, likes in top_n ) def get_top_n_spaces(top_n=100): orgs_to_likes = create_space_to_like_dict() sorted_items = sorted(orgs_to_likes.items(), key=lambda item: item[1], reverse=True) sorted_items = sorted_items[:top_n] return sorted_items def plot_top_n_spaces(top_n=100): top_n = get_top_n_spaces(top_n) return "".join( f"\n- [{space}](https://huggingface.co./spaces/{space}) with {likes:,} likes" for space, likes in top_n ) with gr.Blocks() as demo: gr.HTML("

🏆 HuggyRanker 🏆

") gr.HTML( """

Rank a single Space or all of the Spaces created by an organization or user by likes

""" ) gr.HTML( """

Remember likes aren't everything!

""" ) gr.Markdown( """## Rank Specific Spaces or Orgs Provide this app with a Space ID or a Username/Organization name to rank by likes.""" ) with gr.Row(): space_id = gr.Textbox( "librarian-bots", max_lines=1, label="Space or user/organization ID" ) filter_zero = gr.Radio( choices=["no", "yes"], label="Filter out spaces with 0 likes in the ranking?", value="yes", ) run_btn = gr.Button("Show ranking for this Space org org/user!", label="Rank Space") result = gr.Markdown() run_btn.click(rank_space_and_org, inputs=[space_id, filter_zero], outputs=result) gr.Markdown("## Leaderboard of Top 100 Spaces and Orgs/Users by Likes") with gr.Row(): with gr.Accordion("Show rankings for Orgs and Users", open=False): gr.Markdown("""## 🥇 Top 100 Orgs and Users by Likes 🥇""") ranking_board = gr.Markdown(plot_top_n_orgs_and_users()) with gr.Accordion("Show rankings for Spaces", open=False): gr.Markdown("""## 🏅 Top 100 Spaces by Likes 🏅""") ranking_board = gr.Markdown(plot_top_n_spaces()) demo.launch()