Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import list_spaces | |
from cachetools import TTLCache, cached | |
from toolz import groupby, valmap | |
from diskcache import Cache | |
import platform | |
is_macos = platform.system() == "Darwin" | |
if is_macos: | |
cache = Cache("cache") | |
def cached_decorator(func): | |
return cache.memoize(typed=True, expire=1)(func) | |
else: | |
ttl_cache = TTLCache(maxsize=100, ttl=60 * 10) | |
cached_decorator = cached(cache=ttl_cache) | |
def get_spaces(): | |
return list(list_spaces(full=True)) | |
get_spaces() # to warm up the cache | |
def create_space_to_like_dict(): | |
spaces = get_spaces() | |
return {space.id: space.likes for space in spaces} | |
def create_org_to_like_dict(): | |
spaces = get_spaces() | |
grouped = groupby(lambda x: x.author, spaces) | |
return valmap(lambda x: sum(s.likes for s in x), grouped) | |
def relative_rank(my_dict, target_key, filter_zero=False): | |
if filter_zero: | |
my_dict = {k: v for k, v in my_dict.items() if v != 0} | |
if target_key not in my_dict: | |
raise gr.Error(f"'{target_key}' not found lease check the ID and try again.") | |
sorted_items = sorted(my_dict.items(), key=lambda item: item[1], reverse=True) | |
position = [key for key, _ in sorted_items].index(target_key) | |
num_lower = len(sorted_items) - position - 1 | |
num_higher = position | |
return { | |
"rank": (num_higher + 1) / len(my_dict) * 100, | |
"num_higher": num_higher, | |
"num_lower": num_lower, | |
} | |
def relative_rank_for_space(space_id, filter_zero=False): | |
space_to_like_dict = create_space_to_like_dict() | |
return relative_rank(space_to_like_dict, space_id, filter_zero=filter_zero) | |
def relative_rank_for_org(org_id, filter_zero=False): | |
org_to_like_dict = create_org_to_like_dict() | |
return relative_rank(org_to_like_dict, org_id, filter_zero=filter_zero) | |
def rank_space(space_id): | |
return relative_rank_for_space(space_id) | |
def rank_space_and_org(space_or_org_id, filter_zero): | |
filter_zero = filter_zero == "yes" | |
split = space_or_org_id.split("/") | |
if len(split) == 2: | |
space_rank = relative_rank_for_space(space_or_org_id, filter_zero=filter_zero) | |
return f"""Space [{space_or_org_id}](https://huggingface.co./spaces/{space_or_org_id}) is ranked {space_rank['rank']:.2f}% | |
with {space_rank['num_higher']:,} Spaces above and {space_rank['num_lower']:,} Spaces below in the raking of Space likes""" | |
if len(split) == 1: | |
org_rank = relative_rank_for_org(space_or_org_id, filter_zero=filter_zero) | |
return f"""Organization or user [{space_or_org_id}](https://huggingface.co./{space_or_org_id}) is ranked {org_rank['rank']:.2f}% | |
with {org_rank['num_higher']:,} orgs/users above and {org_rank['num_lower']:,} orgs/users below in the raking of Space likes""" | |
def get_top_n_orgs_and_users(top_n=100): | |
orgs_to_likes = create_org_to_like_dict() | |
sorted_items = sorted(orgs_to_likes.items(), key=lambda item: item[1], reverse=True) | |
sorted_items = sorted_items[:top_n] | |
return sorted_items | |
def plot_top_n_orgs_and_users(top_n=100): | |
top_n = get_top_n_orgs_and_users(top_n) | |
return "".join( | |
f"\n- [{org}](https://huggingface.co./{org}) with {likes:,} likes" | |
for org, likes in top_n | |
) | |
def get_top_n_spaces(top_n=100): | |
orgs_to_likes = create_space_to_like_dict() | |
sorted_items = sorted(orgs_to_likes.items(), key=lambda item: item[1], reverse=True) | |
sorted_items = sorted_items[:top_n] | |
return sorted_items | |
def plot_top_n_spaces(top_n=100): | |
top_n = get_top_n_spaces(top_n) | |
return "".join( | |
f"\n- [{space}](https://huggingface.co./spaces/{space}) with {likes:,} likes" | |
for space, likes in top_n | |
) | |
with gr.Blocks() as demo: | |
gr.HTML("<h1 style='text-align: center;'> 🏆 HuggyRanker 🏆 </h1>") | |
gr.HTML( | |
"""<p style='text-align: center;'>Rank a single Space or all of the Spaces created by an organization or user by likes</p>""" | |
) | |
gr.HTML( | |
"""<p style="text-align: center;"><i>Remember likes aren't everything!</i></p>""" | |
) | |
gr.Markdown( | |
"""## Rank Specific Spaces or Orgs | |
Provide this app with a Space ID or a Username/Organization name to rank by likes.""" | |
) | |
with gr.Row(): | |
space_id = gr.Textbox( | |
"librarian-bots", max_lines=1, label="Space or user/organization ID" | |
) | |
filter_zero = gr.Radio( | |
choices=["no", "yes"], | |
label="Filter out spaces with 0 likes in the ranking?", | |
value="yes", | |
) | |
run_btn = gr.Button("Show ranking for this Space org org/user!", label="Rank Space") | |
result = gr.Markdown() | |
run_btn.click(rank_space_and_org, inputs=[space_id, filter_zero], outputs=result) | |
gr.Markdown("## Leaderboard of Top 100 Spaces and Orgs/Users by Likes") | |
with gr.Row(): | |
with gr.Accordion("Show rankings for Orgs and Users", open=False): | |
gr.Markdown("""## π₯ Top 100 Orgs and Users by Likes π₯""") | |
ranking_board = gr.Markdown(plot_top_n_orgs_and_users()) | |
with gr.Accordion("Show rankings for Spaces", open=False): | |
gr.Markdown("""## π Top 100 Spaces by Likes π """) | |
ranking_board = gr.Markdown(plot_top_n_spaces()) | |
demo.launch() | |