davanstrien HF staff commited on
Commit
0bb28cf
·
1 Parent(s): 45edcec

small fixes

Browse files
Files changed (1) hide show
  1. app.py +22 -3
app.py CHANGED
@@ -1,3 +1,7 @@
 
 
 
 
1
  import arxiv
2
  import gradio as gr
3
  import pandas as pd
@@ -5,12 +9,26 @@ from apscheduler.schedulers.background import BackgroundScheduler
5
  from cachetools import TTLCache, cached
6
  from setfit import SetFitModel
7
  from tqdm.auto import tqdm
8
- import os
9
 
10
  os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
11
 
12
  CACHE_TIME = 60 * 60 * 12 # 12 hours
13
- MAX_RESULTS = 1_000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
 
16
  @cached(cache=TTLCache(maxsize=10, ttl=CACHE_TIME))
@@ -94,13 +112,14 @@ all_possible_arxiv_categories = sorted(prepare_data().category.unique().tolist()
94
  broad_categories = sorted(prepare_data().broad_category.unique().tolist())
95
 
96
 
 
97
  def create_markdown_summary(categories=None, new_only=True, narrow_categories=None):
98
  df = prepare_data()
99
  if new_only:
100
  df = df[df["prediction"] == "new_dataset"]
101
  if narrow_categories is not None:
102
  df = df[df["category"].isin(narrow_categories)]
103
- if categories is not None:
104
  df = prepare_data()
105
  if new_only:
106
  df = df[df["prediction"] == "new_dataset"]
 
1
+ import os
2
+ from functools import lru_cache, wraps
3
+ from typing import Any, Callable
4
+
5
  import arxiv
6
  import gradio as gr
7
  import pandas as pd
 
9
  from cachetools import TTLCache, cached
10
  from setfit import SetFitModel
11
  from tqdm.auto import tqdm
 
12
 
13
  os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
14
 
15
  CACHE_TIME = 60 * 60 * 12 # 12 hours
16
+ MAX_RESULTS = 1000
17
+
18
+
19
+ # def list_cacheable(func: Callable[..., Any]) -> Callable[..., Any]:
20
+ # @lru_cache(maxsize=100)
21
+ # def cacheable_func(*args: Any, **kwargs: Any) -> Any:
22
+ # return func(*args, **kwargs)
23
+
24
+ # @wraps(func)
25
+ # def wrapper(*args: Any, **kwargs: Any) -> Any:
26
+ # # Convert lists to tuples to make them hashable
27
+ # args = tuple(tuple(arg) if isinstance(arg, list) else arg for arg in args)
28
+ # kwargs = {k: tuple(v) if isinstance(v, list) else v for k, v in kwargs.items()}
29
+ # return cacheable_func(*args, **kwargs)
30
+
31
+ # return wrapper
32
 
33
 
34
  @cached(cache=TTLCache(maxsize=10, ttl=CACHE_TIME))
 
112
  broad_categories = sorted(prepare_data().broad_category.unique().tolist())
113
 
114
 
115
+ # @list_cacheable
116
  def create_markdown_summary(categories=None, new_only=True, narrow_categories=None):
117
  df = prepare_data()
118
  if new_only:
119
  df = df[df["prediction"] == "new_dataset"]
120
  if narrow_categories is not None:
121
  df = df[df["category"].isin(narrow_categories)]
122
+ if categories is not None and not narrow_categories:
123
  df = prepare_data()
124
  if new_only:
125
  df = df[df["prediction"] == "new_dataset"]