File size: 14,085 Bytes
92e2ee4 9a0fc73 92e2ee4 9a0fc73 92e2ee4 13c4458 92e2ee4 9a0fc73 92e2ee4 9a0fc73 92e2ee4 9a0fc73 92e2ee4 a638b78 92e2ee4 9a0fc73 92e2ee4 69aa356 13c4458 69aa356 b46a92a 69aa356 b46a92a 69aa356 b46a92a 69aa356 b46a92a d8b1bc1 b46a92a 69aa356 b46a92a 69aa356 b46a92a 69aa356 ebda00c 69aa356 ebda00c 69aa356 ebda00c 69aa356 ebda00c 87954ce ebda00c 87954ce b46a92a 92e2ee4 b46a92a 9a0fc73 b46a92a 69aa356 89d5d61 69aa356 ebda00c 69aa356 89d5d61 69aa356 89d5d61 92e2ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import asyncio
import os
import re
from typing import Dict
import gradio as gr
import httpx
from cachetools import TTLCache, cached
from cashews import NOT_NONE, cache
from dotenv import load_dotenv
from httpx import AsyncClient, Limits
from huggingface_hub import (
ModelCard,
ModelFilter,
get_repo_discussions,
hf_hub_url,
list_models,
logging,
)
from huggingface_hub.utils import HfHubHTTPError, RepositoryNotFoundError
from tqdm.asyncio import tqdm as atqdm
from tqdm.auto import tqdm
import random
from huggingface_hub import get_discussion_details
cache.setup("mem://")
load_dotenv()
token = os.environ["HUGGINGFACE_TOKEN"]
user_agent = os.environ["USER_AGENT"]
assert token
assert user_agent
headers = {"user-agent": user_agent, "authorization": f"Bearer {token}"}
limits = Limits(max_keepalive_connections=10, max_connections=50)
def create_client():
return AsyncClient(headers=headers, limits=limits, http2=True)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 10))
def get_models(user_or_org):
model_filter = ModelFilter(library="transformers", author=user_or_org)
return list(
tqdm(
iter(
list_models(
filter=model_filter,
# sort="downloads",
# direction=-1,
cardData=True,
full=True,
)
)
)
)
def filter_models(models):
new_models = []
for model in tqdm(models):
try:
if card_data := model.cardData:
base_model = card_data.get("base_model", None)
if not base_model:
new_models.append(model)
except AttributeError:
continue
return new_models
MODEL_ID_RE_PATTERN = re.compile(
"This model is a fine-tuned version of \[(.*?)\]\(.*?\)"
)
BASE_MODEL_PATTERN = re.compile("base_model:\s+(.+)")
@cached(cache=TTLCache(maxsize=100, ttl=60 * 3))
def has_model_card(model):
if siblings := model.siblings:
for sibling in siblings:
if sibling.rfilename == "README.md":
return True
return False
@cached(cache=TTLCache(maxsize=100, ttl=60))
def check_already_has_base_model(text):
return bool(re.search(BASE_MODEL_PATTERN, text))
@cached(cache=TTLCache(maxsize=100, ttl=60))
def extract_model_name(text):
return match.group(1) if (match := re.search(MODEL_ID_RE_PATTERN, text)) else None
# semaphore = asyncio.Semaphore(10) # Maximum number of concurrent tasks
@cache(ttl=120, condition=NOT_NONE)
async def check_readme_for_match(model):
if not has_model_card(model):
return None
model_card_url = hf_hub_url(model.modelId, "README.md")
client = create_client()
try:
resp = await client.get(model_card_url)
if check_already_has_base_model(resp.text):
return None
else:
return None if resp.status_code != 200 else extract_model_name(resp.text)
except httpx.ConnectError:
return None
except httpx.ReadTimeout:
return None
except httpx.ConnectTimeout:
return None
except Exception as e:
print(e)
return None
@cache(ttl=120, condition=NOT_NONE)
async def check_model_exists(model, match):
client = create_client()
url = f"https://huggingface.co./api/models/{match}"
try:
resp = await client.get(url)
if resp.status_code == 200:
return {"modelid": model.modelId, "match": match}
if resp.status_code == 401:
return False
except httpx.ConnectError:
return None
except httpx.ReadTimeout:
return None
except httpx.ConnectTimeout:
return None
except Exception as e:
print(e)
return None
@cache(ttl=120, condition=NOT_NONE)
async def check_model(model):
match = await check_readme_for_match(model)
if match:
return await check_model_exists(model, match)
async def prep_tasks(models):
tasks = []
for model in models:
task = asyncio.create_task(check_model(model))
tasks.append(task)
return [await f for f in atqdm.as_completed(tasks)]
def get_data_for_user(user_or_org):
models = get_models(user_or_org)
models = filter_models(models)
results = asyncio.run(prep_tasks(models))
results = [r for r in results if r is not None]
return results
logger = logging.get_logger()
token = os.getenv("HUGGINGFACE_TOKEN")
def generate_issue_text(based_model_regex_match, opened_by=None):
return f"""This pull request aims to enrich the metadata of your model by adding [`{based_model_regex_match}`](https://huggingface.co./{based_model_regex_match}) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co./spaces/librarian-bots/base_model_explorer).
This PR was requested via the [Librarian Bot](https://huggingface.co./librarian-bot) [metadata request service](https://huggingface.co./spaces/librarian-bots/metadata_request_service) by request of [{opened_by}](https://huggingface.co./{opened_by})
"""
PR_FROM_COMMIT_PATTERN = re.compile(r"pr%2F(\d{1,3})/README.md")
def get_pr_url_from_commit_url(commit_url, repo_id):
re_match = re.search(PR_FROM_COMMIT_PATTERN, commit_url)
pr_number = int(re_match.groups()[0])
return get_discussion_details(repo_id=repo_id, discussion_num=pr_number).url
def update_metadata(metadata_payload: Dict[str, str], user_making_request=None):
metadata_payload["opened_pr"] = False
regex_match = metadata_payload["match"]
repo_id = metadata_payload["modelid"]
try:
model_card = ModelCard.load(repo_id)
except RepositoryNotFoundError:
return metadata_payload
model_card.data["base_model"] = regex_match
template = generate_issue_text(regex_match, opened_by=user_making_request)
try:
if previous_discussions := list(get_repo_discussions(repo_id)):
logger.info("found previous discussions")
if prs := [
discussion
for discussion in previous_discussions
if discussion.is_pull_request
]:
logger.info("found previous pull requests")
for pr in prs:
if pr.author == "librarian-bot":
logger.info("previously opened PR")
if (
pr.title
== "Librarian Bot: Add base_model information to model"
):
logger.info("previously opened PR to add base_model tag")
metadata_payload["opened_pr"] = True
return metadata_payload
commit_url = model_card.push_to_hub(
repo_id,
token=token,
repo_type="model",
create_pr=True,
commit_message="Librarian Bot: Add base_model information to model",
commit_description=template,
)
metadata_payload["opened_pr"] = True
metadata_payload["pr_url"] = get_pr_url_from_commit_url(
commit_url=commit_url, repo_id=repo_id
)
return metadata_payload
except HfHubHTTPError:
return metadata_payload
def open_prs(profile: gr.OAuthProfile | None, user_or_org: str = None):
if not profile:
return "Please login to open PR requests"
username = profile.preferred_username
user_to_receive_prs = user_or_org or username
data = get_data_for_user(user_to_receive_prs)
if user_or_org is not None:
data = random.sample(data, min(5, len(data)))
if not data:
return "No PRs to open"
results = []
for metadata_payload in data:
try:
results.append(
update_metadata(metadata_payload, user_making_request=username)
)
except Exception as e:
logger.error(e)
if not results:
return "No PRs to open"
if not any(r["opened_pr"] for r in results):
return "No PRs to open"
message = "# ✨ Librarian Bot Metadata Request Summary ✨ \n\n"
message += (
f"Librarian bot has {len([r for r in results if r['opened_pr']])} PRs open"
" against your repos \n\n"
)
message += "# URLs for newly opened PRs\n"
for result in results:
if result["opened_pr"]:
print(result)
try:
message += f"- {result['pr_url']}\n"
except KeyError:
continue
return message
# description_text = """
# ## Welcome to the Librarian Bot Metadata Request Service
# ⭐ The Librarian Bot Metadata Request Service allows you to request metadata updates for your models on the Hugging Face Hub. ⭐
# Currently this app allows you to request for librarian bot to add metadata for the `base_model` field, situated in the `YAML` block of your model's `README.md`.
# This app will allow you to request metadata for all your models or for another user or org. If you request metadata for another user or org, librarian bot will randomly select 5 models to request metadata for.
# ### How does librarian bot know what metadata to add to your model card?
# Librarian bot will perform a regular expression match on your `README.md` file to determine whether your model may have bene fine-tuned from another model. This model is known as the `base_model`.
# ### Why add this info to Model Cards?
# Enhancing your model's metadata in this way:
# - 🚀 **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
# - 🏆**Highlights Impact** - It showcases the contributions and influences different models have within the community.
# For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co./spaces/librarian-bots/base_model_explorer).
# """
description_text = """
## Enhance Your Model's Metadata with Librarian Bot!
Welcome to the Librarian Bot Metadata Request Service. With a few clicks, enrich your Hugging Face models with key metadata!
<br>
π― **Purpose of this App**
- Request metadata updates for your models on the Hugging Face Hub, specifically to add or update the `base_model` field in the `YAML` section of your model's `README.md`.
- Optionally, request metadata for models belonging to another user or organization. If doing so, the bot will randomly pick 5 models for metadata addition.
**Note**: The is currently in beta. If you encounter any issues, please [add to this discussion](https://huggingface.co./spaces/librarian-bots/metadata_request_service/discussions/1)
<br>
π€ **How Does Librarian Bot Determine Metadata?**
- It scans the `README.md` of the model to check to try to determine if your model has been fine-tuned from another model. This original model is identified as the `base_model`.
<br>
π **Benefits of Metadata Enhancement**
- **Boosts Discoverability**: Easier tracing of relationships between Hugging Face Hub models.
- **Highlights Impact**: Demonstrates the influence and contribution of different models.
<br>
π‘ **See an Example of base_model Metadata in Action**
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co./spaces/librarian-bots/base_model_explorer).
"""
with gr.Blocks() as demo:
gr.HTML(
"<h1 style='text-align:center;'><span>🤖</span> Librarian Bot Metadata"
" Request Service <span>🤖</span></h1>"
)
gr.Markdown(
"""<div style='text-align:center;'><img src='https://huggingface.co./spaces/davanstrien/librarian_bot_request_metadata/resolve/main/image.png' style='display:block;margin-left:auto;margin-right:auto;width:150px;'></div><p>"""
)
gr.Markdown(description_text)
with gr.Row():
gr.Markdown(
"""
## How to Use the Librarian Bot Metadata Request Service
1. **Login to Hugging Face**: Use the login button below to sign in. If you don't have an account, [create one here](https://huggingface.co./join).
2. **Specify Target User/Organization**: Enter a username or organization name if you wish the Librarian Bot to search metadata for someone other than yourself. Leaving this blank will prompt the bot to look for metadata for your own models and make PRs when a match is found.
3. **Initiate Metadata Enhancement**: Click the "Open Pull Requests" button. The bot will then search for `base_model` metadata and create Pull Requests for models lacking this information.
**Note**: If you specify a target user/organization, the bot will randomly select 5 models to request metadata for. If you do not specify a target user/organization, the bot will try and find `base_model` metadata for all your models."""
)
with gr.Row():
gr.LoginButton()
gr.LogoutButton()
user = gr.Textbox(
value=None, label="(Optional) user or org to open pull requests for"
)
button = gr.Button(value="Open Pull Requests")
results = gr.Markdown()
button.click(open_prs, [user], results)
demo.queue(concurrency_count=1).launch()
|