davanstrien's picture
davanstrien HF staff
feat: Add scheduled collections refresh
f11a054
import asyncio
import concurrent.futures
import json
import logging
import os
import sqlite3
from contextlib import asynccontextmanager
from typing import List
import numpy as np
from apscheduler.schedulers.asyncio import AsyncIOScheduler
from apscheduler.triggers.cron import CronTrigger
from cashews import NOT_NONE, cache
from fastapi import FastAPI, HTTPException, Query
from huggingface_hub import login, upload_file
from pandas import Timestamp
from pydantic import BaseModel
from starlette.responses import RedirectResponse
from create_collections import collections, update_collection_for_dataset
from data_loader import refresh_data
login(token=os.getenv("HF_TOKEN"))
UPDATE_SCHEDULE = {"hour": os.getenv("UPDATE_INTERVAL_HOURS", "*/6")}
COLLECTION_UPDATE_SCHEDULE = {"hour": "0"} # Run at midnight every day
cache.setup("mem://?check_interval=10&size=10000")
logger = logging.getLogger(__name__)
def get_db_connection():
conn = sqlite3.connect("datasets.db")
conn.row_factory = sqlite3.Row
conn.execute("PRAGMA journal_mode = WAL")
conn.execute("PRAGMA synchronous = NORMAL")
return conn
def setup_database():
conn = get_db_connection()
c = conn.cursor()
c.execute(
"""CREATE TABLE IF NOT EXISTS datasets
(hub_id TEXT PRIMARY KEY,
likes INTEGER,
downloads INTEGER,
tags JSON,
created_at INTEGER,
last_modified INTEGER,
license JSON,
language JSON,
config_name TEXT,
column_names JSON,
features JSON)"""
)
c.execute(
"""
CREATE INDEX IF NOT EXISTS idx_column_names
ON datasets(column_names)
"""
)
c.execute(
"""
CREATE INDEX IF NOT EXISTS idx_downloads_likes
ON datasets(downloads DESC, likes DESC)
"""
)
conn.commit()
c.execute("ANALYZE")
conn.close()
def serialize_numpy(obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, Timestamp):
return int(obj.timestamp())
logger.error(f"Object of type {type(obj)} is not JSON serializable")
raise TypeError(f"Object of type {type(obj)} is not JSON serializable")
def background_refresh_data():
logger.info("Starting background data refresh")
try:
return refresh_data()
except Exception as e:
logger.error(f"Error in background data refresh: {str(e)}")
return None
async def update_database():
logger.info("Starting scheduled data refresh")
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(background_refresh_data)
try:
datasets = await asyncio.get_event_loop().run_in_executor(
None, future.result
)
except asyncio.CancelledError:
future.cancel()
logger.info("Data refresh cancelled")
return
if datasets is None:
logger.error("Data refresh failed, skipping database update")
return
conn = get_db_connection()
try:
c = conn.cursor()
c.executemany(
"""
INSERT OR REPLACE INTO datasets
(hub_id, likes, downloads, tags, created_at, last_modified, license, language, config_name, column_names, features)
VALUES (?, ?, ?, json(?), ?, ?, json(?), json(?), ?, json(?), json(?))
""",
[
(
data["hub_id"],
data.get("likes", 0),
data.get("downloads", 0),
json.dumps(data.get("tags", []), default=serialize_numpy),
int(data["created_at"].timestamp())
if isinstance(data["created_at"], Timestamp)
else data.get("created_at", 0),
int(data["last_modified"].timestamp())
if isinstance(data["last_modified"], Timestamp)
else data.get("last_modified", 0),
json.dumps(data.get("license", []), default=serialize_numpy),
json.dumps(data.get("language", []), default=serialize_numpy),
data.get("config_name", ""),
json.dumps(data.get("column_names", []), default=serialize_numpy),
json.dumps(data.get("features", []), default=serialize_numpy),
)
for data in datasets
],
)
conn.commit()
logger.info("Scheduled data refresh completed")
except Exception as e:
logger.error(f"Error during database update: {str(e)}")
conn.rollback()
finally:
conn.close()
try:
upload_file(
path_or_fileobj="datasets.db",
path_in_repo="datasets.db",
repo_id="librarian-bots/column-db",
repo_type="dataset",
)
logger.info("Database file uploaded to Hugging Face Hub successfully")
except Exception as e:
logger.error(f"Error uploading database file to Hugging Face Hub: {str(e)}")
async def update_collections():
logger.info("Starting scheduled collection update")
try:
for collection in collections:
result = await asyncio.get_event_loop().run_in_executor(
None,
update_collection_for_dataset,
collection["collection_name"],
collection["dataset_columns"],
collection["collection_description"],
"librarian-bots",
)
logger.info(f"Updated collection: {result}")
except Exception as e:
logger.error(f"Error during collection update: {str(e)}")
@asynccontextmanager
async def lifespan(app: FastAPI):
setup_database()
logger.info("Performing initial data refresh")
await update_database()
scheduler = AsyncIOScheduler()
scheduler.add_job(update_database, CronTrigger(**UPDATE_SCHEDULE))
scheduler.add_job(update_collections, CronTrigger(**COLLECTION_UPDATE_SCHEDULE))
scheduler.start()
await update_collections()
yield
scheduler.shutdown()
app = FastAPI(lifespan=lifespan)
@app.get("/", include_in_schema=False)
def root():
return RedirectResponse(url="/docs")
class SearchResponse(BaseModel):
total: int
page: int
page_size: int
results: List[dict]
@cache(ttl="1h", condition=NOT_NONE)
@app.get("/search", response_model=SearchResponse)
async def search_datasets(
columns: List[str] = Query(...),
match_all: bool = Query(False),
page: int = Query(1, ge=1),
page_size: int = Query(10, ge=1, le=1000),
):
offset = (page - 1) * page_size
conn = get_db_connection()
c = conn.cursor()
try:
if match_all:
query = """
SELECT *, (
SELECT COUNT(*)
FROM json_each(column_names)
WHERE json_each.value IN ({})
) as match_count
FROM datasets
WHERE match_count = ?
ORDER BY downloads DESC, likes DESC
LIMIT ? OFFSET ?
""".format(",".join("?" * len(columns)))
c.execute(query, (*columns, len(columns), page_size, offset))
else:
query = """
SELECT * FROM datasets
WHERE EXISTS (
SELECT 1
FROM json_each(column_names)
WHERE json_each.value IN ({})
)
ORDER BY downloads DESC, likes DESC
LIMIT ? OFFSET ?
""".format(",".join("?" * len(columns)))
c.execute(query, (*columns, page_size, offset))
results = [dict(row) for row in c.fetchall()]
if match_all:
count_query = """
SELECT COUNT(*) as total FROM datasets
WHERE (
SELECT COUNT(*)
FROM json_each(column_names)
WHERE json_each.value IN ({})
) = ?
""".format(",".join("?" * len(columns)))
c.execute(count_query, (*columns, len(columns)))
else:
count_query = """
SELECT COUNT(*) as total FROM datasets
WHERE EXISTS (
SELECT 1
FROM json_each(column_names)
WHERE json_each.value IN ({})
)
""".format(",".join("?" * len(columns)))
c.execute(count_query, columns)
total = c.fetchone()["total"]
for result in results:
result["tags"] = json.loads(result["tags"])
result["license"] = json.loads(result["license"])
result["language"] = json.loads(result["language"])
result["column_names"] = json.loads(result["column_names"])
result["features"] = json.loads(result["features"])
return SearchResponse(
total=total, page=page, page_size=page_size, results=results
)
except sqlite3.Error as e:
logger.error(f"Database error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Database error: {str(e)}") from e
finally:
conn.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)