import gradio as gr import pandas as pd from cachetools import TTLCache, cached from huggingface_hub import list_models from toolz import groupby from tqdm.auto import tqdm @cached(TTLCache(maxsize=10, ttl=60 * 60 * 3)) def get_all_models(): models = list( tqdm( iter(list_models(cardData=True, limit=None, sort="downloads", direction=-1)) ) ) models = [model for model in models if model is not None] return [ model for model in models if model.downloads > 1 ] # filter out models with 0 downloads def has_base_model_info(model): try: if card_data := model.cardData: if base_model := card_data.get("base_model"): if isinstance(base_model, str): return True except AttributeError: return False return False grouped_by_has_base_model_info = groupby(has_base_model_info, get_all_models()) def produce_summary(): return f"""{len(grouped_by_has_base_model_info.get(True)):,} models have base model info. {len(grouped_by_has_base_model_info.get(False)):,} models don't have base model info. Currently {round(len(grouped_by_has_base_model_info.get(True))/len(get_all_models())*100,2)}% of models have base model info.""" models_with_base_model_info = grouped_by_has_base_model_info.get(True) base_models = [ model.cardData.get("base_model") for model in models_with_base_model_info ] df = pd.DataFrame( pd.DataFrame({"base_model": base_models}).value_counts() ).reset_index() df_with_org = df.copy(deep=True) pipeline_tags = [x.pipeline_tag for x in models_with_base_model_info] # sort pipeline tags alphabetically unique_pipeline_tags = list( {x.pipeline_tag for x in models_with_base_model_info if x.pipeline_tag is not None} ) def parse_org(hub_id): parts = hub_id.split("/") if len(parts) == 2: return parts[0] if parts[0] != "." else None else: return "huggingface" def render_model_hub_link(hub_id): link = f"https://huggingface.co./{hub_id}" return f'{hub_id}' df_with_org["org"] = df_with_org["base_model"].apply(parse_org) df_with_org = df_with_org.dropna(subset=["org"]) grouped_by_base_model = groupby( lambda x: x.cardData.get("base_model"), models_with_base_model_info ) print(df.columns) all_base_models = df["base_model"].to_list() def get_grandchildren(base_model): grandchildren = [] for model in tqdm(grouped_by_base_model[base_model]): model_id = model.modelId grandchildren.extend(grouped_by_base_model.get(model_id, [])) return grandchildren def return_models_for_base_model(base_model): models = grouped_by_base_model.get(base_model) # sort models by downloads models = sorted(models, key=lambda x: x.downloads, reverse=True) results = "" results += ( "## Models fine-tuned from" f" [`{base_model}`](https://huggingface.co./{base_model}) \n\n" ) results += f"`{base_model}` has {len(models)} children\n\n" total_download_number = sum(model.downloads for model in models) results += ( f"`{base_model}`'s children have been" f" downloaded {total_download_number:,} times\n\n" ) grandchildren = get_grandchildren(base_model) number_of_grandchildren = len(grandchildren) results += f"`{base_model}` has {number_of_grandchildren} grandchildren\n\n" grandchildren_download_count = sum(model.downloads for model in grandchildren) results += ( f"`{base_model}`'s grandchildren have been" f" downloaded {grandchildren_download_count:,} times\n\n" ) results += f"Including grandchildren, `{base_model}` has {number_of_grandchildren + len(models):,} descendants\n\n" results += f"Including grandchildren, `{base_model}`'s descendants have been downloaded {grandchildren_download_count + total_download_number:,} times\n\n" results += "### Children models \n\n" for model in models: url = f"https://huggingface.co./{model.modelId}" results += ( f"- [{model.modelId}]({url}) | number of downloads {model.downloads:,}" + "\n\n" ) return results def return_base_model_popularity(pipeline=None): df_with_pipeline_info = ( pd.DataFrame({"base_model": base_models, "pipeline": pipeline_tags}) .value_counts() .reset_index() ) if pipeline is not None: df_with_pipeline_info = df_with_pipeline_info[ df_with_pipeline_info["pipeline"] == pipeline ] keep_columns = ["base_model", "count"] df_with_pipeline_info["base_model"] = df_with_pipeline_info["base_model"].apply( render_model_hub_link ) return df_with_pipeline_info[keep_columns].head(50) def return_base_model_popularity_by_org(pipeline=None): referenced_base_models = [ f"[`{model}`](https://huggingface.co./{model})" for model in base_models ] df_with_pipeline_info = pd.DataFrame( {"base_model": base_models, "pipeline": pipeline_tags} ) df_with_pipeline_info["org"] = df_with_pipeline_info["base_model"].apply(parse_org) df_with_pipeline_info["org"] = df_with_pipeline_info["org"].apply( render_model_hub_link ) df_with_pipeline_info = df_with_pipeline_info.dropna(subset=["org"]) df_with_org = df_with_pipeline_info.copy(deep=True) if pipeline is not None: df_with_org = df_with_pipeline_info[df_with_org["pipeline"] == pipeline] df_with_org = df_with_org.drop(columns=["pipeline"]) df_with_org = pd.DataFrame(df_with_org.value_counts()) return pd.DataFrame( df_with_org.groupby("org")["count"] .sum() .sort_values(ascending=False) .reset_index() .head(50) ) with gr.Blocks() as demo: gr.Markdown( "# Base model explorer: explore the lineage of models on the 🤗 Hub" ) gr.Markdown( """When sharing models to the Hub, it is possible to [specify a base model in the model card](https://huggingface.co./docs/hub/model-cards#specifying-a-base-model), i.e. that your model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased). This Space allows you to find children's models for a given base model and view the popularity of models for fine-tuning. You can also optionally filter by the task to see rankings for a particular machine learning task. Don't forget to ❤ if you like this space 🤗""" ) gr.Markdown(produce_summary()) gr.Markdown("## Find all models trained from a base model") base_model = gr.Dropdown( all_base_models[:100], label="Base Model", allow_custom_value=True ) results = gr.Markdown() base_model.change(return_models_for_base_model, base_model, results) gr.Markdown("## Base model rankings ") dropdown = gr.Dropdown( choices=unique_pipeline_tags, value=None, label="Filter rankings by task pipeline", ) with gr.Accordion("Base model popularity ranking", open=False): df_popularity = gr.DataFrame( return_base_model_popularity(None), datatype="markdown" ) dropdown.change(return_base_model_popularity, dropdown, df_popularity) with gr.Accordion("Base model popularity ranking by organization", open=False): df_popularity_org = gr.DataFrame( return_base_model_popularity_by_org(None), datatype="markdown" ) dropdown.change( return_base_model_popularity_by_org, dropdown, df_popularity_org ) demo.launch()