|
import gradio as gr |
|
import pandas as pd |
|
from cachetools import TTLCache, cached |
|
from huggingface_hub import list_models |
|
from toolz import groupby |
|
from tqdm.auto import tqdm |
|
|
|
|
|
@cached(TTLCache(maxsize=10, ttl=60 * 60 * 3)) |
|
def get_all_models(): |
|
models = list( |
|
tqdm( |
|
iter(list_models(cardData=True, limit=None, sort="downloads", direction=-1)) |
|
) |
|
) |
|
models = [model for model in models if model is not None] |
|
return [ |
|
model for model in models if model.downloads > 1 |
|
] |
|
|
|
|
|
def has_base_model_info(model): |
|
try: |
|
if card_data := model.cardData: |
|
if base_model := card_data.get("base_model"): |
|
if isinstance(base_model, str): |
|
return True |
|
except AttributeError: |
|
return False |
|
return False |
|
|
|
|
|
grouped_by_has_base_model_info = groupby(has_base_model_info, get_all_models()) |
|
|
|
|
|
def produce_summary(): |
|
return f"""{len(grouped_by_has_base_model_info.get(True)):,} models have base model info. |
|
{len(grouped_by_has_base_model_info.get(False)):,} models don't have base model info. |
|
Currently {round(len(grouped_by_has_base_model_info.get(True))/len(get_all_models())*100,2)}% of models have base model info.""" |
|
|
|
|
|
models_with_base_model_info = grouped_by_has_base_model_info.get(True) |
|
base_models = [ |
|
model.cardData.get("base_model") for model in models_with_base_model_info |
|
] |
|
df = pd.DataFrame( |
|
pd.DataFrame({"base_model": base_models}).value_counts() |
|
).reset_index() |
|
df_with_org = df.copy(deep=True) |
|
pipeline_tags = [x.pipeline_tag for x in models_with_base_model_info] |
|
|
|
unique_pipeline_tags = list( |
|
{x.pipeline_tag for x in models_with_base_model_info if x.pipeline_tag is not None} |
|
) |
|
|
|
|
|
def parse_org(hub_id): |
|
parts = hub_id.split("/") |
|
if len(parts) == 2: |
|
return parts[0] if parts[0] != "." else None |
|
else: |
|
return "huggingface" |
|
|
|
|
|
def render_model_hub_link(hub_id): |
|
link = f"https://huggingface.co./{hub_id}" |
|
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>' |
|
|
|
|
|
df_with_org["org"] = df_with_org["base_model"].apply(parse_org) |
|
df_with_org = df_with_org.dropna(subset=["org"]) |
|
|
|
grouped_by_base_model = groupby( |
|
lambda x: x.cardData.get("base_model"), models_with_base_model_info |
|
) |
|
print(df.columns) |
|
all_base_models = df["base_model"].to_list() |
|
|
|
|
|
def get_grandchildren(base_model): |
|
grandchildren = [] |
|
for model in tqdm(grouped_by_base_model[base_model]): |
|
model_id = model.modelId |
|
grandchildren.extend(grouped_by_base_model.get(model_id, [])) |
|
return grandchildren |
|
|
|
|
|
def return_models_for_base_model(base_model): |
|
models = grouped_by_base_model.get(base_model) |
|
|
|
models = sorted(models, key=lambda x: x.downloads, reverse=True) |
|
results = "" |
|
results += ( |
|
"## Models fine-tuned from" |
|
f" [`{base_model}`](https://huggingface.co./{base_model}) \n\n" |
|
) |
|
results += f"`{base_model}` has {len(models)} children\n\n" |
|
total_download_number = sum(model.downloads for model in models) |
|
results += ( |
|
f"`{base_model}`'s children have been" |
|
f" downloaded {total_download_number:,} times\n\n" |
|
) |
|
grandchildren = get_grandchildren(base_model) |
|
number_of_grandchildren = len(grandchildren) |
|
results += f"`{base_model}` has {number_of_grandchildren} grandchildren\n\n" |
|
grandchildren_download_count = sum(model.downloads for model in grandchildren) |
|
results += ( |
|
f"`{base_model}`'s grandchildren have been" |
|
f" downloaded {grandchildren_download_count:,} times\n\n" |
|
) |
|
results += f"Including grandchildren, `{base_model}` has {number_of_grandchildren + len(models):,} descendants\n\n" |
|
results += f"Including grandchildren, `{base_model}`'s descendants have been downloaded {grandchildren_download_count + total_download_number:,} times\n\n" |
|
results += "### Children models \n\n" |
|
for model in models: |
|
url = f"https://huggingface.co./{model.modelId}" |
|
results += ( |
|
f"- [{model.modelId}]({url}) | number of downloads {model.downloads:,}" |
|
+ "\n\n" |
|
) |
|
return results |
|
|
|
|
|
def return_base_model_popularity(pipeline=None): |
|
df_with_pipeline_info = ( |
|
pd.DataFrame({"base_model": base_models, "pipeline": pipeline_tags}) |
|
.value_counts() |
|
.reset_index() |
|
) |
|
|
|
if pipeline is not None: |
|
df_with_pipeline_info = df_with_pipeline_info[ |
|
df_with_pipeline_info["pipeline"] == pipeline |
|
] |
|
keep_columns = ["base_model", "count"] |
|
df_with_pipeline_info["base_model"] = df_with_pipeline_info["base_model"].apply( |
|
render_model_hub_link |
|
) |
|
return df_with_pipeline_info[keep_columns].head(50) |
|
|
|
|
|
def return_base_model_popularity_by_org(pipeline=None): |
|
referenced_base_models = [ |
|
f"[`{model}`](https://huggingface.co./{model})" for model in base_models |
|
] |
|
df_with_pipeline_info = pd.DataFrame( |
|
{"base_model": base_models, "pipeline": pipeline_tags} |
|
) |
|
df_with_pipeline_info["org"] = df_with_pipeline_info["base_model"].apply(parse_org) |
|
df_with_pipeline_info["org"] = df_with_pipeline_info["org"].apply( |
|
render_model_hub_link |
|
) |
|
df_with_pipeline_info = df_with_pipeline_info.dropna(subset=["org"]) |
|
df_with_org = df_with_pipeline_info.copy(deep=True) |
|
if pipeline is not None: |
|
df_with_org = df_with_pipeline_info[df_with_org["pipeline"] == pipeline] |
|
df_with_org = df_with_org.drop(columns=["pipeline"]) |
|
df_with_org = pd.DataFrame(df_with_org.value_counts()) |
|
return pd.DataFrame( |
|
df_with_org.groupby("org")["count"] |
|
.sum() |
|
.sort_values(ascending=False) |
|
.reset_index() |
|
.head(50) |
|
) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
"# Base model explorer: explore the lineage of models on the 🤗 Hub" |
|
) |
|
gr.Markdown( |
|
"""When sharing models to the Hub, it is possible to [specify a base model in the model card](https://huggingface.co./docs/hub/model-cards#specifying-a-base-model), i.e. that your model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased). |
|
This Space allows you to find children's models for a given base model and view the popularity of models for fine-tuning. |
|
You can also optionally filter by the task to see rankings for a particular machine learning task. |
|
Don't forget to ❤ if you like this space 🤗""" |
|
) |
|
|
|
gr.Markdown(produce_summary()) |
|
gr.Markdown("## Find all models trained from a base model") |
|
base_model = gr.Dropdown( |
|
all_base_models[:100], label="Base Model", allow_custom_value=True |
|
) |
|
results = gr.Markdown() |
|
base_model.change(return_models_for_base_model, base_model, results) |
|
gr.Markdown("## Base model rankings ") |
|
dropdown = gr.Dropdown( |
|
choices=unique_pipeline_tags, |
|
value=None, |
|
label="Filter rankings by task pipeline", |
|
) |
|
with gr.Accordion("Base model popularity ranking", open=False): |
|
df_popularity = gr.DataFrame( |
|
return_base_model_popularity(None), datatype="markdown" |
|
) |
|
dropdown.change(return_base_model_popularity, dropdown, df_popularity) |
|
with gr.Accordion("Base model popularity ranking by organization", open=False): |
|
df_popularity_org = gr.DataFrame( |
|
return_base_model_popularity_by_org(None), datatype="markdown" |
|
) |
|
dropdown.change( |
|
return_base_model_popularity_by_org, dropdown, df_popularity_org |
|
) |
|
|
|
|
|
demo.launch() |
|
|