CareerMatcher / app.py
liberatoratif's picture
Rename careermatcher.py to app.py
f95d293
raw
history blame
8.34 kB
import streamlit as st
import plotly.express as px
import pandas as pd
import numpy as np
import pickle as pkl
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
nlp = spacy.load('en_core_web_lg')
import re
import docx2txt
from spacy.matcher import PhraseMatcher
# from transformers import BertForSequenceClassification
# from transformers import BertTokenizer
# Load model directly
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# tokenizer = AutoTokenizer.from_pretrained("liberatoratif/BERT-resume-job-recommender")
# model = AutoModelForSequenceClassification.from_pretrained("liberatoratif/BERT-resume-job-recommender")
matcher = PhraseMatcher(nlp.vocab)
import torch
st.set_page_config(
page_title="Resume Scanner",
page_icon="πŸ“",
layout="wide",
initial_sidebar_state="expanded",
)
# output_dir = "model_save"
enc_dir = "target_encodings.pkl"
matcher_dir = "linkedin_skill.txt"
# @st.cache
def bert():
# model_loaded_temp = BertForSequenceClassification.from_pretrained(output_dir)
model_loaded_temp = AutoModelForSequenceClassification.from_pretrained("liberatoratif/BERT-resume-job-recommender")
return model_loaded_temp
# @st.cache
def bert_token():
# tokenizer_loaded_temp = BertTokenizer.from_pretrained(output_dir)
tokenizer_loaded_temp = AutoTokenizer.from_pretrained("liberatoratif/BERT-resume-job-recommender")
return tokenizer_loaded_temp
# @st.cache
def label_enc():
enc = pkl.load(open(enc_dir, 'rb'))
return enc
# @st.cache
def ph_match():
with open(matcher_dir, 'r', encoding='utf-8') as file:
text = file.read()
return text
label_encoder = label_enc()
model_loaded = bert()
tokenizer_loaded = bert_token()
txt = ph_match()
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 250px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 150px;
margin-left: -500px;
}
</style>
""",
unsafe_allow_html=True,
)
st.markdown("<h1 style='text-align: centre; color: cyan;'>RESUME/CV SCANNER</h1>",
unsafe_allow_html=True)
st.markdown("<h6 style='text-align: centre; color: white;'>Know which domain fit's your resume :)</h1>",
unsafe_allow_html=True)
stops = list(STOP_WORDS)
def extract_text_from_docx(docx_path):
txt = docx2txt.process(docx_path)
if txt:
return txt.replace('\t', ' ')
return None
def cleanResume(resumeText):
resumeText = ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)"," ",resumeText).split())
resumeText = re.sub(r'[^\x00-\x7F]+',r' ', resumeText)
resumeText = ''.join(resumeText.splitlines())
return resumeText
def complete_pack(x):
demo = nlp(x)
lst = [i.text.lower() for i in demo if i.text.lower() not in stops]
return lst
with st.sidebar:
global resume_text, upload
global resume_text_spacy, re_temp
upload = st.file_uploader("DRAG AND DROP YOUR RESUME NOW")
st.markdown("<h5 style='text-align: centre; color: red;'>Only .docx type files accepted</h1>",
unsafe_allow_html=True)
if upload:
try:
resume_text = extract_text_from_docx(upload)
resume_text = resume_text.replace('\n\n', ' ')
re_temp = cleanResume(resume_text)
resume_text_spacy = nlp(re_temp)
except Exception as e:
st.error('WRONG FILE FORMAT : Only .docx(WORD DOC) type of files are accepted')
scan = st.button('SCAN πŸ“')
if scan:
try:
emails = re.findall(r"[a-z0-9\.\-+_]+@[a-z0-9\.\-+_]+\.[a-z]+", resume_text)
phone = re.findall(r'[\+\(]?[1-9][0-9 .\-\(\)]{8,}[0-9]', resume_text)
links = re.findall(r"(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:'\".,<>?Β«Β»β€œβ€β€˜β€™]))", resume_text)
txt = txt.split('\n')
ev = [nlp.make_doc(i) for i in txt]
matcher.add("SKILLS", None, *ev)
get_skills = matcher(resume_text_spacy)
demo = []
for match_id, start, end in get_skills:
span = resume_text_spacy[start : end]
demo.append(span.text)
re_text = ' '.join(demo)
my_skills_re_text = re_text
my_skills_clean_re_text = cleanResume(my_skills_re_text)
skills = complete_pack(my_skills_clean_re_text)
skills = ' '.join(skills)
lst = []
lst.append(skills)
model_loaded.eval()
# Tokenize the input text
input_ids = tokenizer_loaded.encode(lst[0], add_special_tokens=True)
input_ids = torch.tensor(input_ids).unsqueeze(0) # Add batch dimension
# Move the input tensor to the same device as the model
# input_ids = input_ids.to(device)
# model_loaded = model_loaded.to(device)
# Perform the forward pass to get the model's predictions
with torch.no_grad():
result = model_loaded(input_ids, token_type_ids=None, attention_mask=None, return_dict=True)
logits = result.logits
# Move the logits to the CPU and convert to numpy array
logits = logits.detach().cpu().numpy()
# Get the predicted label
predicted_label = np.argmax(logits)
# Print the predicted label
# st.write("Predicted Label:", predicted_label)
probs = logits[0]
# print("text:", lst[0])
# print("predictions:", probs)
pred_idx = np.argmax(probs)
# kp = list(pred_idx)
d = {}
ind = 0
for i in probs:
d[label_encoder.inverse_transform([ind])[0]] = i
ind+=1
# st.write("Your skills are matching to : ", label_encoder.inverse_transform([pred_idx])[0])
domain = label_encoder.inverse_transform([pred_idx])[0]
data = pd.DataFrame({'Domains' : list(d.keys()), 'Probs' : list(d.values())})
# st.markdown(f"**Your skills are matching to:** <span style='color: cyan;'>{domain}</span>", unsafe_allow_html=True) #BF3EFF
st.markdown(f"<span style='color: #BF3EFF;'>**Your skills are matching to :**</span> <span style='color: #54FF9F;'>{domain}</span>", unsafe_allow_html=True)
datacpy = data.copy()
datacpy['Probs'] = datacpy['Probs']*10
datacpy.rename(columns={'Probs': 'Percentage Prediction of your Domain'}, inplace=True)
st.markdown("<h3 style='text-align: centre; color: blue;'>PERCENT OF YOUR DOMAIN MATCH</h3>",
unsafe_allow_html=True)
st.dataframe(datacpy.sort_values('Percentage Prediction of your Domain', ascending=False))
domains = px.bar(data, x = 'Domains', y = 'Probs',width=800, height=400)
st.plotly_chart(domains)
if len(list(set(emails))) > 0:
st.markdown("<h4 style='text-align: centre; color: blue;'>EMAIL βœ”οΈ </h1>",
unsafe_allow_html=True)
st.success(list(set(emails)))
else:
st.markdown("<h4 style='text-align: centre; color: blue;'>EMAIL ❌ </h1>",
unsafe_allow_html=True)
st.error('Email-Id is not present try including it in your Resume')
if len(list(set(phone))) > 0:
st.markdown("<h4 style='text-align: centre; color: blue;'>MOBILE NO βœ”οΈ </h1>",
unsafe_allow_html=True)
st.success(list(set(phone)))
else:
st.markdown("<h4 style='text-align: centre; color: blue;'>MOBILE NO ❌ </h1>",
unsafe_allow_html=True)
st.error('Mobile number is not present try including it in your Resume')
if len(list(set(links))) > 0:
st.markdown("<h4 style='text-align: centre; color: blue;'>LINKS βœ”οΈ </h1>",
unsafe_allow_html=True)
st.success(list(set(links)))
else:
st.markdown("<h4 style='text-align: centre; color: blue;'>LINKS ❌</h1>",
unsafe_allow_html=True)
st.error("Link's are not present try including your Github or LinkedIn Profile in your Resume")
except Exception as e:
st.write(e)
st.error("😲 Try uploading your file again")