Spaces:
Runtime error
Runtime error
zfzhang-thu
commited on
Commit
·
587ae20
1
Parent(s):
0cfc205
using bf16
Browse files- leo/model.py +3 -3
leo/model.py
CHANGED
@@ -11,7 +11,7 @@ from leo.grounding_head import SequentialGroundHead
|
|
11 |
from leo.utils import get_mlp_head
|
12 |
|
13 |
|
14 |
-
def maybe_autocast(model, dtype='
|
15 |
# if on cpu, don't use autocast
|
16 |
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
|
17 |
enable_autocast = model.device != torch.device('cpu')
|
@@ -75,7 +75,7 @@ class SequentialGrounder(torch.nn.Module):
|
|
75 |
if 'vicuna' in llm_name.lower():
|
76 |
self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_cfg_path, truncation_side=llm_truncation_side)
|
77 |
self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
78 |
-
self.llm_model = LlamaForCausalLM.from_pretrained(llm_cfg_path, torch_dtype=torch.
|
79 |
self.llm_model.resize_token_embeddings(len(self.llm_tokenizer))
|
80 |
else:
|
81 |
self.llm_tokenizer = AutoTokenizer.from_pretrained(llm_cfg_path, truncation_side=llm_truncation_side)
|
@@ -320,7 +320,7 @@ class SequentialGrounder(torch.nn.Module):
|
|
320 |
|
321 |
with maybe_autocast(self):
|
322 |
outputs = self.llm_model(
|
323 |
-
inputs_embeds=inputs_embeds
|
324 |
attention_mask=attention_mask,
|
325 |
return_dict=True,
|
326 |
output_hidden_states=True,
|
|
|
11 |
from leo.utils import get_mlp_head
|
12 |
|
13 |
|
14 |
+
def maybe_autocast(model, dtype='bf16', enabled=True):
|
15 |
# if on cpu, don't use autocast
|
16 |
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
|
17 |
enable_autocast = model.device != torch.device('cpu')
|
|
|
75 |
if 'vicuna' in llm_name.lower():
|
76 |
self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_cfg_path, truncation_side=llm_truncation_side)
|
77 |
self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
78 |
+
self.llm_model = LlamaForCausalLM.from_pretrained(llm_cfg_path, torch_dtype=torch.float16)
|
79 |
self.llm_model.resize_token_embeddings(len(self.llm_tokenizer))
|
80 |
else:
|
81 |
self.llm_tokenizer = AutoTokenizer.from_pretrained(llm_cfg_path, truncation_side=llm_truncation_side)
|
|
|
320 |
|
321 |
with maybe_autocast(self):
|
322 |
outputs = self.llm_model(
|
323 |
+
inputs_embeds=inputs_embeds,
|
324 |
attention_mask=attention_mask,
|
325 |
return_dict=True,
|
326 |
output_hidden_states=True,
|