from functools import partial, lru_cache import duckdb import gradio as gr import pandas as pd import pyarrow as pa import requests from huggingface_hub import HfApi READ_PARQUET_FUNCTIONS = ("dd.read_parquet", "pd.read_parquet") EMPTY_TABLE = pa.Table.from_pylist([{str(i): "" for i in range(4)}] * 10) EMPTY_DF: pd.DataFrame = EMPTY_TABLE.to_pandas() MAX_NUM_COLUMNS = 20 NUM_TRENDING_DATASETS = 10 NUM_USER_DATASETS = 10 css = """ .transparent-dropdown, .transparent-dropdown .container .wrap, .transparent-accordion { background: var(--body-background-fill); } input { -webkit-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; } .cell-menu-button { z-index: -1; } thead { display: none; } .secondary-wrap:has(input[aria-expanded="true"]) { background: var(--table-odd-background-fill); } .secondary-wrap:has(input[aria-expanded="true"])::after { content: '↵'; margin-right: var(--size-10); border-width: 1px; border-color: var(--block-border-color); border-radius: .23rem; background-color: #141c2e; padding-left: 2px; font-size: .75rem; color: var(--block-title-text-color); } var(--body-background-fill) """ js = """ function load() { // Set DataFrame readonly MutationObserver = window.MutationObserver || window.WebKitMutationObserver; var observer = new MutationObserver(function(mutations, observer) { // fired when a mutation occurs document.querySelectorAll('.readonly-dataframe div .table-wrap button svelte-virtual-table-viewport table tbody tr td .cell-wrap input').forEach(i => i.setAttribute("readonly", "true")); }); // define what element should be observed by the observer // and what types of mutations trigger the callback observer.observe(document, { subtree: true, childList: true }); // Run query on Enter in transform dropdown document.querySelectorAll("input").forEach(i => { if (i.parentElement.parentElement.parentElement.parentElement.parentElement.classList.contains("transform_dropdown")) { i.onkeydown = (event) => { if (event.code == "Enter") { document.getElementById("run_button").click(); } } } }) } """ text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t") date_functions_df = pd.read_csv("date_functions.tsv", delimiter="\t") list_functions_df = pd.read_csv("list_functions.tsv", delimiter="\t") numeric_functions_df = pd.read_csv("numeric_functions.tsv", delimiter="\t") time_functions_df = pd.read_csv("time_functions.tsv", delimiter="\t") timestamp_functions_df = pd.read_csv("timestamp_functions.tsv", delimiter="\t") @lru_cache(maxsize=3) def duckdb_sql(query: str) -> duckdb.DuckDBPyRelation: return duckdb.sql(query) def prepare_function(func: str, placeholders: list[str], column_name: str) -> str: prepared_func = func.split("(", 1) for placeholder in placeholders: if placeholder in prepared_func[-1]: prepared_func[-1] = prepared_func[-1].replace(placeholder, column_name, 1) return "(".join(prepared_func) else: return None def prettify_df(df: pd.DataFrame): return df.apply(lambda s: s.apply(str)) def get_prepared_functions_from_table(table: pa.Table) -> dict[str, list[str]]: prepared_functions = {} for field in table.schema: if pa.types.is_integer(field.type) or pa.types.is_floating(field.type): prepared_functions[field.name] = [prepare_function(numeric_func, ["x"], field.name) for numeric_func in numeric_functions_df.Name] elif pa.types.is_string(field.type): prepared_functions[field.name] = [prepare_function(text_func, ["string"], field.name) for text_func in text_functions_df.Name] elif pa.types.is_date(field.type): prepared_functions[field.name] = [prepare_function(date_func, ["startdate", "date"], field.name) for date_func in date_functions_df.Name] elif pa.types.is_list(field.type): prepared_functions[field.name] = [prepare_function(list_func, ["list"], field.name) for list_func in list_functions_df.Name] elif pa.types.is_time(field.type): prepared_functions[field.name] = [prepare_function(time_func, ["starttime", "time"], field.name) for time_func in time_functions_df.Name] elif pa.types.is_timestamp(field.type): prepared_functions[field.name] = [prepare_function(timestamp_func, ["startdate", "timestamp"], field.name) for timestamp_func in timestamp_functions_df.Name] elif pa.types.is_struct(field.type): prepared_functions[field.name] = [f"{field.name}.{subfield.name}" for subfield in field.type.fields] else: prepared_functions[field.name] = [] prepared_functions[field.name] = [prepared_function for prepared_function in prepared_functions[field.name] if prepared_function] return prepared_functions with gr.Blocks(css=css, js=js) as demo: loading_codes_json = gr.JSON(visible=False) dataset_subset_split_textbox = gr.Textbox(visible=False) input_table_state = gr.State() run_button = gr.Button(visible=False, elem_id="run_button") gr.Markdown("# Dataset Spreadsheets\n\nEdit any dataset on Hugging Face (full list [here](https://huggingface.co./datasets)) using DuckDB functions (documentation [here](https://duckdb.org/docs/sql/functions/overview))") with gr.Group(): with gr.Row(): dataset_dropdown = gr.Dropdown(label="Dataset", allow_custom_value=True, scale=10) subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown") split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown") gr.LoginButton() with gr.Row(): transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True, elem_classes="transform_dropdown") for column_name in EMPTY_DF.columns] transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False, elem_classes="transform_dropdown") for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))] dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe") with gr.Accordion("Show SQL command", open=False, elem_classes="transparent-accordion"): code_markdown = gr.Markdown() def show_subset_dropdown(dataset: str): if dataset and "/" not in dataset.strip().strip("/"): return [] resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json() loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or [] subsets = [loading_code["config_name"] for loading_code in loading_codes] subset = (subsets or [""])[0] return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes def show_split_dropdown(subset: str, loading_codes: list[dict]): splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0] split = (splits or [""])[0] return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset)) def show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]): pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0] if dataset and subset and split and pattern: table = duckdb_sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT 10").arrow() else: table = EMPTY_TABLE prepared_functions = get_prepared_functions_from_table(table) new_transform_dropdowns = [dict(choices=[column_name] + prepared_functions[column_name], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in table.column_names] new_transform_dropdowns += [dict(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))] df = table.to_pandas() return [table, dict(value=prettify_df(df), column_widths=[f"{1/len(df.columns):.0%}"] * len(df.columns))] + new_transform_dropdowns def set_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict], input_table: pa.Table, df: pd.DataFrame, *transforms, show_warning=True): try: table = duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_table;").arrow() except Exception as e: if show_warning: gr.Warning(f"{type(e).__name__}: {e}") return { dataframe: df } prepared_functions = get_prepared_functions_from_table(table) new_transform_dropdowns = [dict(choices=list({original_column_name: None, column_name: None}) + prepared_functions[column_name], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for original_column_name, column_name in zip(input_table.column_names, table.column_names)] new_transform_dropdowns += [dict(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))] pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0] return { dataframe: prettify_df(table.to_pandas()), **dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns])), code_markdown: ( "```sql\n" + f"SELECT {', '.join(new_transform_dropdown['value'] for new_transform_dropdown in new_transform_dropdowns if new_transform_dropdown['value'])} " + f"FROM 'hf://datasets/{dataset}/{pattern}';" + "\n```" ) if pattern else "", } for column_index, transform_dropdown in enumerate(transform_dropdowns): transform_dropdown.select(partial(set_dataframe, show_warning=False), inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json, input_table_state, dataframe] + transform_dropdowns, outputs=[dataframe, code_markdown] + transform_dropdowns) run_button.click(set_dataframe, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json, input_table_state, dataframe] + transform_dropdowns, outputs=[dataframe, code_markdown] + transform_dropdowns) @demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown, input_table_state, dataframe, code_markdown] + transform_dropdowns) def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None): api = HfApi(token=oauth_token.token if oauth_token else None) datasets = list(api.list_datasets(limit=NUM_TRENDING_DATASETS, sort="trendingScore", direction=-1, filter=["format:parquet"])) if oauth_token and (user := api.whoami().get("name")): datasets += list(api.list_datasets(limit=NUM_USER_DATASETS, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user)) dataset = request.query_params.get("dataset") or datasets[0].id subsets, loading_codes = show_subset_dropdown(dataset) splits = show_split_dropdown(subsets["value"], loading_codes) input_table, input_dataframe, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes) pattern = ([loading_code["arguments"]["splits"][splits["value"]] for loading_code in loading_codes if loading_code["config_name"] == subsets["value"]] or [None])[0] return { dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset), loading_codes_json: loading_codes, subset_dropdown: gr.Dropdown(**subsets), split_dropdown: gr.Dropdown(**splits), input_table_state: input_table, dataframe: gr.DataFrame(**input_dataframe), **dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns])), code_markdown: ( "```sql\n" + f"SELECT {', '.join(new_transform_dropdown['value'] for new_transform_dropdown in new_transform_dropdowns if new_transform_dropdown['value'])} " + f"FROM 'hf://datasets/{dataset}/{pattern}';" + "\n```" ) if pattern else "", } @dataset_dropdown.select(inputs=dataset_dropdown, outputs=[loading_codes_json, subset_dropdown, split_dropdown, input_table_state, dataframe, code_markdown] + transform_dropdowns) def _show_subset_dropdown(dataset: str): subsets, loading_codes = show_subset_dropdown(dataset) splits = show_split_dropdown(subsets["value"], loading_codes) input_table, input_dataframe, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes) pattern = ([loading_code["arguments"]["splits"][splits["value"]] for loading_code in loading_codes if loading_code["config_name"] == subsets["value"]] or [None])[0] return { loading_codes_json: loading_codes, subset_dropdown: gr.Dropdown(**subsets), split_dropdown: gr.Dropdown(**splits), input_table_state: input_table, dataframe: gr.DataFrame(**input_dataframe), **dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns])), code_markdown: ( "```sql\n" + f"SELECT {', '.join(new_transform_dropdown['value'] for new_transform_dropdown in new_transform_dropdowns if new_transform_dropdown['value'])} " + f"FROM 'hf://datasets/{dataset}/{pattern}';" + "\n```" ) if pattern else "", } @subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown, input_table_state, dataframe, code_markdown] + transform_dropdowns) def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]): splits = show_split_dropdown(subset, loading_codes) input_table, input_dataframe, *new_transform_dropdowns = show_input_dataframe(dataset, subset, splits["value"], loading_codes) pattern = ([loading_code["arguments"]["splits"][splits["value"]] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0] return { split_dropdown: gr.Dropdown(**splits), input_table_state: input_table, dataframe: gr.DataFrame(**input_dataframe), **dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns])), code_markdown: ( "```sql\n" + f"SELECT {', '.join(new_transform_dropdown['value'] for new_transform_dropdown in new_transform_dropdowns if new_transform_dropdown['value'])} " + f"FROM 'hf://datasets/{dataset}/{pattern}';" + "\n```" ) if pattern else "", } @split_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json], outputs=[input_table_state, dataframe, code_markdown] + transform_dropdowns) def _show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame: input_table, input_dataframe, *new_transform_dropdowns = show_input_dataframe(dataset, subset, split, loading_codes) pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0] return { input_table_state: input_table, dataframe: gr.DataFrame(**input_dataframe), **dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns])), code_markdown: ( "```sql\n" + f"SELECT {', '.join(new_transform_dropdown['value'] for new_transform_dropdown in new_transform_dropdowns if new_transform_dropdown['value'])} " + f"FROM 'hf://datasets/{dataset}/{pattern}';" + "\n```" ) if pattern else "", } if __name__ == "__main__": demo.launch()