Spaces:
Sleeping
Sleeping
File size: 7,734 Bytes
9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e 9a96811 8a9db0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
from functools import partial, lru_cache
import duckdb
import gradio as gr
import pandas as pd
import requests
from huggingface_hub import HfApi
READ_PARQUET_FUNCTIONS = ("dd.read_parquet", "pd.read_parquet")
EMPTY_DF = pd.DataFrame([{str(i): "" for i in range(4)}] * 10)
MAX_NUM_COLUMNS = 20
css = """
@media (prefers-color-scheme: dark) {
.transparent-dropdown, .transparent-dropdown .container .wrap {
background: var(--bg-dark);
}
}
@media (prefers-color-scheme: light) {
.transparent-dropdown, .transparent-dropdown .container .wrap {
background: var(--bg);
}
}
input {
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.cell-menu-button {
z-index: -1;
}
thead {
display: none;
}
"""
js = """
function setDataFrameReadonly() {
MutationObserver = window.MutationObserver || window.WebKitMutationObserver;
var observer = new MutationObserver(function(mutations, observer) {
// fired when a mutation occurs
document.querySelectorAll('.readonly-dataframe div .table-wrap button svelte-virtual-table-viewport table tbody tr td .cell-wrap input').forEach(i => i.setAttribute("readonly", "true"));
});
// define what element should be observed by the observer
// and what types of mutations trigger the callback
observer.observe(document, {
subtree: true,
childList: true
});
}
"""
text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t")
def prepare_function(func: str, placeholder: str, column_name: str) -> str:
if "(" in func:
prepared_func = func.split("(")
prepared_func[1] = prepared_func[1].replace(placeholder, column_name, 1)
prepared_func = "(".join(prepared_func)
else:
prepared_func = func.replace(placeholder, column_name, 1)
return prepared_func
with gr.Blocks(css=css, js=js) as demo:
loading_codes_json = gr.JSON(visible=False)
dataset_subset_split_textbox = gr.Textbox(visible=False)
input_dataframe = gr.DataFrame(visible=False)
with gr.Group():
with gr.Row():
dataset_dropdown = gr.Dropdown(label="Open Dataset", allow_custom_value=True, scale=10)
subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
gr.LoginButton()
with gr.Row():
transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in EMPTY_DF.columns]
transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))]
dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe")
@demo.load(outputs=dataset_dropdown)
def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None):
api = HfApi(token=oauth_token.token if oauth_token else None)
datasets = list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"]))
if oauth_token and (user := api.whoami().get("user")):
datasets += list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user))
dataset = request.query_params.get("dataset") or datasets[0].id
return {dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset)}
@dataset_dropdown.change(inputs=dataset_dropdown, outputs=loading_codes_json)
def _fetch_read_parquet_loading(dataset: str):
if dataset and "/" not in dataset.strip().strip("/"):
return []
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
return ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or []
@loading_codes_json.change(inputs=loading_codes_json, outputs=[subset_dropdown, split_dropdown])
def _show_subset_dropdown(loading_codes: list[dict]):
subsets = [loading_code["config_name"] for loading_code in loading_codes]
subset = (subsets or [""])[0]
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
split = (splits or [""])[0]
return gr.Dropdown(subsets, value=subset, visible=len(subsets) > 1), gr.Dropdown(splits, value=split, visible=len(splits) > 1)
@subset_dropdown.change(inputs=[loading_codes_json, subset_dropdown], outputs=split_dropdown)
def _show_split_dropdown(loading_codes: list[dict], subset: str):
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
split = (splits or [""])[0]
return gr.Dropdown(splits, value=split, visible=len(splits) > 1)
@split_dropdown.change(inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json], outputs=input_dataframe)
@lru_cache(maxsize=3)
def _set_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
if dataset and subset and split and pattern:
df = duckdb.sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT 10").df()
return gr.DataFrame(df, column_widths=[f"{1/len(df.columns):.0%}"] * len(df.columns))
else:
return gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns))
@input_dataframe.change(inputs=input_dataframe, outputs=transform_dropdowns)
def _set_transforms(input_df: pd.DataFrame):
new_transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in input_df.columns]
new_transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))]
return new_transform_dropdowns
def _set_dataframe(input_df: pd.DataFrame, *transforms: tuple[str], column_index: int):
try:
print(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;")
# return input_df
return duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;")
except Exception as e:
raise gr.Error(f"{type(e).__name__}: {e}")
for column_index, transform_dropdown in enumerate(transform_dropdowns):
transform_dropdown.change(partial(_set_dataframe, column_index=column_index), inputs=[input_dataframe] + transform_dropdowns, outputs=dataframe)
if __name__ == "__main__":
demo.launch()
|