File size: 7,734 Bytes
9a96811
 
 
8a9db0e
9a96811
8a9db0e
 
 
9a96811
 
 
8a9db0e
 
 
 
 
 
 
 
 
 
 
9a96811
 
 
 
 
 
 
 
 
 
 
 
8a9db0e
9a96811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9db0e
9a96811
 
 
 
 
 
 
 
 
 
8a9db0e
 
9a96811
 
 
 
 
 
 
 
 
 
 
8a9db0e
 
9a96811
8a9db0e
 
 
 
 
 
 
 
9a96811
 
8a9db0e
9a96811
 
8a9db0e
 
9a96811
8a9db0e
 
 
 
 
 
 
9a96811
8a9db0e
 
 
9a96811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9db0e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from functools import partial, lru_cache

import duckdb
import gradio as gr
import pandas as pd
import requests
from huggingface_hub import HfApi

READ_PARQUET_FUNCTIONS = ("dd.read_parquet", "pd.read_parquet")
EMPTY_DF = pd.DataFrame([{str(i): "" for i in range(4)}] * 10)
MAX_NUM_COLUMNS = 20
css = """
@media (prefers-color-scheme: dark) {
    .transparent-dropdown, .transparent-dropdown .container .wrap  {
        background: var(--bg-dark);
    }
}
@media (prefers-color-scheme: light) {
    .transparent-dropdown, .transparent-dropdown .container .wrap  {
        background: var(--bg);
    }
}
input {
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;          
}
.cell-menu-button {
    z-index: -1;
}
thead {
    display: none;
}
"""
js = """
function setDataFrameReadonly() {
    MutationObserver = window.MutationObserver || window.WebKitMutationObserver;
    var observer = new MutationObserver(function(mutations, observer) {
        // fired when a mutation occurs
        document.querySelectorAll('.readonly-dataframe div .table-wrap button svelte-virtual-table-viewport table tbody tr td .cell-wrap input').forEach(i => i.setAttribute("readonly", "true"));
    });
    // define what element should be observed by the observer
    // and what types of mutations trigger the callback
    observer.observe(document, {
        subtree: true,
        childList: true
    });
    
}
"""
text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t")

def prepare_function(func: str, placeholder: str, column_name: str) -> str:
    if "(" in func:
        prepared_func = func.split("(")
        prepared_func[1] = prepared_func[1].replace(placeholder, column_name, 1)
        prepared_func = "(".join(prepared_func)
    else:
        prepared_func = func.replace(placeholder, column_name, 1)
    return prepared_func

with gr.Blocks(css=css, js=js) as demo:
    loading_codes_json = gr.JSON(visible=False)
    dataset_subset_split_textbox = gr.Textbox(visible=False)
    input_dataframe = gr.DataFrame(visible=False)
    with gr.Group():
        with gr.Row():
            dataset_dropdown = gr.Dropdown(label="Open Dataset", allow_custom_value=True, scale=10)
            subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
            split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
            gr.LoginButton()
        with gr.Row():
            transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in EMPTY_DF.columns]
            transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))]
        dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe")

    @demo.load(outputs=dataset_dropdown)
    def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None):
        api = HfApi(token=oauth_token.token if oauth_token else None)
        datasets = list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"]))
        if oauth_token and (user := api.whoami().get("user")):
            datasets += list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user))
        dataset = request.query_params.get("dataset") or datasets[0].id
        return {dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset)}

    @dataset_dropdown.change(inputs=dataset_dropdown, outputs=loading_codes_json)
    def _fetch_read_parquet_loading(dataset: str):
        if dataset and "/" not in dataset.strip().strip("/"):
            return []
        resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
        return ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or []

    @loading_codes_json.change(inputs=loading_codes_json, outputs=[subset_dropdown, split_dropdown])
    def _show_subset_dropdown(loading_codes: list[dict]):
        subsets = [loading_code["config_name"] for loading_code in loading_codes]
        subset = (subsets or [""])[0]
        splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
        split = (splits or [""])[0]
        return gr.Dropdown(subsets, value=subset, visible=len(subsets) > 1), gr.Dropdown(splits, value=split, visible=len(splits) > 1)

    @subset_dropdown.change(inputs=[loading_codes_json, subset_dropdown], outputs=split_dropdown)
    def _show_split_dropdown(loading_codes: list[dict], subset: str):
        splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
        split = (splits or [""])[0]
        return gr.Dropdown(splits, value=split, visible=len(splits) > 1)
    
    @split_dropdown.change(inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json], outputs=input_dataframe)
    @lru_cache(maxsize=3)
    def _set_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
        pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
        if dataset and subset and split and pattern:
            df = duckdb.sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT 10").df()
            return gr.DataFrame(df, column_widths=[f"{1/len(df.columns):.0%}"] * len(df.columns))
        else:
            return gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns))
    
    @input_dataframe.change(inputs=input_dataframe, outputs=transform_dropdowns)
    def _set_transforms(input_df: pd.DataFrame):
        new_transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in input_df.columns]
        new_transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))]
        return new_transform_dropdowns
    
    def _set_dataframe(input_df: pd.DataFrame, *transforms: tuple[str], column_index: int):
        try:
            print(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;")
            # return input_df
            return duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;")
        except Exception as e:
            raise gr.Error(f"{type(e).__name__}: {e}")
    
    for column_index, transform_dropdown in enumerate(transform_dropdowns):
        transform_dropdown.change(partial(_set_dataframe, column_index=column_index), inputs=[input_dataframe] + transform_dropdowns, outputs=dataframe)



if __name__ == "__main__":
    demo.launch()