{ "cells": [ { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from matplotlib import pyplot as plt \n", "import seaborn as sns\n", "\n", "pd.set_option('display.float_format', '{:.2f}'.format)\n", "sns.set_style(\"darkgrid\")\n", "sns.set_palette(\"mako\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "df_cleaned = pd.read_parquet(\"../data/processed/arxiv_papers.parquet.gzip\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idsubmitterauthorstitlecommentsjournal-refdoireport-nocategorieslicenseabstractversionsupdate_dateauthors_parsedcleaned_abstracts
00704.0001Pavel NadolskyC. Bal\\'azs, E. L. Berger, P. M. Nadolsky, C.-...Calculation of prompt diphoton production cros...37 pages, 15 figures; published versionPhys.Rev.D76:013009,200710.1103/PhysRevD.76.013009ANL-HEP-PR-07-12hep-phNoneA fully differential calculation in perturba...[{'created': 'Mon, 2 Apr 2007 19:18:42 GMT', '...2008-11-26[[Balázs, C., ], [Berger, E. L., ], [Nadolsky,...fully differential calculation perturbative...
10704.0002Louis TheranIleana Streinu and Louis TheranSparsity-certifying Graph DecompositionsTo appear in Graphs and CombinatoricsNoneNoneNonemath.CO cs.CGhttp://arxiv.org/licenses/nonexclusive-distrib...We describe a new algorithm, the $(k,\\ell)$-...[{'created': 'Sat, 31 Mar 2007 02:26:18 GMT', ...2008-12-13[[Streinu, Ileana, ], [Theran, Louis, ]]describe new algorithm $ k,\\ell)$-pebble ga...
20704.0003Hongjun PanHongjun PanThe evolution of the Earth-Moon system based o...23 pages, 3 figuresNoneNoneNonephysics.gen-phNoneThe evolution of Earth-Moon system is descri...[{'created': 'Sun, 1 Apr 2007 20:46:54 GMT', '...2008-01-13[[Pan, Hongjun, ]]evolution earth moon system describe dark m...
30704.0004David CallanDavid CallanA determinant of Stirling cycle numbers counts...11 pagesNoneNoneNonemath.CONoneWe show that a determinant of Stirling cycle...[{'created': 'Sat, 31 Mar 2007 03:16:14 GMT', ...2007-05-23[[Callan, David, ]]determinant stirling cycle number count unl...
40704.0005Alberto TorchinskyWael Abu-Shammala and Alberto TorchinskyFrom dyadic $\\Lambda_{\\alpha}$ to $\\Lambda_{\\a...NoneIllinois J. Math. 52 (2008) no.2, 681-689NoneNonemath.CA math.FANoneIn this paper we show how to compute the $\\L...[{'created': 'Mon, 2 Apr 2007 18:09:58 GMT', '...2013-10-15[[Abu-Shammala, Wael, ], [Torchinsky, Alberto, ]]paper compute $ \\lambda_{\\alpha}$ norm $ \\a...
................................................
2268247supr-con/9608008Ruslan ProzorovR. Prozorov, M. Konczykowski, B. Schmidt, Y. Y...On the origin of the irreversibility line in t...19 pages, LaTex, 6 PostScript figures; Author'...None10.1103/PhysRevB.54.15530Nonesupr-con cond-mat.supr-conNoneWe report on measurements of the angular dep...[{'created': 'Mon, 26 Aug 1996 15:08:35 GMT', ...2009-10-30[[Prozorov, R., ], [Konczykowski, M., ], [Schm...report measurement angular dependence irrev...
2268248supr-con/9609001Durga P. ChoudhuryDurga P. Choudhury, Balam A. Willemsen, John S...Nonlinear Response of HTSC Thin Film Microwave...4 pages, LaTeX type, Uses IEEE style files, 60...None10.1109/77.620744Nonesupr-con cond-mat.supr-conNoneThe non-linear microwave surface impedance o...[{'created': 'Sat, 31 Aug 1996 17:34:38 GMT', ...2016-11-18[[Choudhury, Durga P., , Physics Department, N...non linear microwave surface impedance patt...
2268249supr-con/9609002Durga P. ChoudhuryBalam A. Willemsen, J. S. Derov and S.Sridhar ...Critical State Flux Penetration and Linear Mic...20 pages, LaTeX type, Uses REVTeX style files,...None10.1103/PhysRevB.56.11989Nonesupr-con cond-mat.supr-conNoneThe vortex contribution to the dc field (H) ...[{'created': 'Tue, 3 Sep 1996 14:08:26 GMT', '...2009-10-30[[Willemsen, Balam A., , Physics Department,\\n...vortex contribution dc field h dependent mi...
2268250supr-con/9609003Hasegawa YasumasaYasumasa Hasegawa (Himeji Institute of Technol...Density of States and NMR Relaxation Rate in A...7 pages, 4 PostScript Figures, LaTeX, to appea...None10.1143/JPSJ.65.3131Nonesupr-con cond-mat.supr-conNoneWe show that the density of states in an ani...[{'created': 'Wed, 18 Sep 1996 07:57:29 GMT', ...2009-10-30[[Hasegawa, Yasumasa, , Himeji Institute of Te...density state anisotropic superconductor \\n...
2268251supr-con/9609004Masanori IchiokaNaoki Enomoto, Masanori Ichioka and Kazushige ...Ginzburg Landau theory for d-wave pairing and ...12 pages including 8 eps figs, LaTeX with jpsj...J. Phys. Soc. Jpn. 66, 204 (1997).10.1143/JPSJ.66.204Nonesupr-con cond-mat.supr-conNoneThe Ginzburg Landau theory for d_{x^2-y^2}-w...[{'created': 'Wed, 25 Sep 1996 14:17:09 GMT', ...2009-10-30[[Enomoto, Naoki, , Okayama Univ.], [Ichioka, ...ginzburg landau theory d_{x^2 y^2}-wave sup...
\n", "

2268252 rows × 15 columns

\n", "
" ], "text/plain": [ " id submitter \n", "0 0704.0001 Pavel Nadolsky \\\n", "1 0704.0002 Louis Theran \n", "2 0704.0003 Hongjun Pan \n", "3 0704.0004 David Callan \n", "4 0704.0005 Alberto Torchinsky \n", "... ... ... \n", "2268247 supr-con/9608008 Ruslan Prozorov \n", "2268248 supr-con/9609001 Durga P. Choudhury \n", "2268249 supr-con/9609002 Durga P. Choudhury \n", "2268250 supr-con/9609003 Hasegawa Yasumasa \n", "2268251 supr-con/9609004 Masanori Ichioka \n", "\n", " authors \n", "0 C. Bal\\'azs, E. L. Berger, P. M. Nadolsky, C.-... \\\n", "1 Ileana Streinu and Louis Theran \n", "2 Hongjun Pan \n", "3 David Callan \n", "4 Wael Abu-Shammala and Alberto Torchinsky \n", "... ... \n", "2268247 R. Prozorov, M. Konczykowski, B. Schmidt, Y. Y... \n", "2268248 Durga P. Choudhury, Balam A. Willemsen, John S... \n", "2268249 Balam A. Willemsen, J. S. Derov and S.Sridhar ... \n", "2268250 Yasumasa Hasegawa (Himeji Institute of Technol... \n", "2268251 Naoki Enomoto, Masanori Ichioka and Kazushige ... \n", "\n", " title \n", "0 Calculation of prompt diphoton production cros... \\\n", "1 Sparsity-certifying Graph Decompositions \n", "2 The evolution of the Earth-Moon system based o... \n", "3 A determinant of Stirling cycle numbers counts... \n", "4 From dyadic $\\Lambda_{\\alpha}$ to $\\Lambda_{\\a... \n", "... ... \n", "2268247 On the origin of the irreversibility line in t... \n", "2268248 Nonlinear Response of HTSC Thin Film Microwave... \n", "2268249 Critical State Flux Penetration and Linear Mic... \n", "2268250 Density of States and NMR Relaxation Rate in A... \n", "2268251 Ginzburg Landau theory for d-wave pairing and ... \n", "\n", " comments \n", "0 37 pages, 15 figures; published version \\\n", "1 To appear in Graphs and Combinatorics \n", "2 23 pages, 3 figures \n", "3 11 pages \n", "4 None \n", "... ... \n", "2268247 19 pages, LaTex, 6 PostScript figures; Author'... \n", "2268248 4 pages, LaTeX type, Uses IEEE style files, 60... \n", "2268249 20 pages, LaTeX type, Uses REVTeX style files,... \n", "2268250 7 pages, 4 PostScript Figures, LaTeX, to appea... \n", "2268251 12 pages including 8 eps figs, LaTeX with jpsj... \n", "\n", " journal-ref \n", "0 Phys.Rev.D76:013009,2007 \\\n", "1 None \n", "2 None \n", "3 None \n", "4 Illinois J. Math. 52 (2008) no.2, 681-689 \n", "... ... \n", "2268247 None \n", "2268248 None \n", "2268249 None \n", "2268250 None \n", "2268251 J. Phys. Soc. Jpn. 66, 204 (1997). \n", "\n", " doi report-no \n", "0 10.1103/PhysRevD.76.013009 ANL-HEP-PR-07-12 \\\n", "1 None None \n", "2 None None \n", "3 None None \n", "4 None None \n", "... ... ... \n", "2268247 10.1103/PhysRevB.54.15530 None \n", "2268248 10.1109/77.620744 None \n", "2268249 10.1103/PhysRevB.56.11989 None \n", "2268250 10.1143/JPSJ.65.3131 None \n", "2268251 10.1143/JPSJ.66.204 None \n", "\n", " categories \n", "0 hep-ph \\\n", "1 math.CO cs.CG \n", "2 physics.gen-ph \n", "3 math.CO \n", "4 math.CA math.FA \n", "... ... \n", "2268247 supr-con cond-mat.supr-con \n", "2268248 supr-con cond-mat.supr-con \n", "2268249 supr-con cond-mat.supr-con \n", "2268250 supr-con cond-mat.supr-con \n", "2268251 supr-con cond-mat.supr-con \n", "\n", " license \n", "0 None \\\n", "1 http://arxiv.org/licenses/nonexclusive-distrib... \n", "2 None \n", "3 None \n", "4 None \n", "... ... \n", "2268247 None \n", "2268248 None \n", "2268249 None \n", "2268250 None \n", "2268251 None \n", "\n", " abstract \n", "0 A fully differential calculation in perturba... \\\n", "1 We describe a new algorithm, the $(k,\\ell)$-... \n", "2 The evolution of Earth-Moon system is descri... \n", "3 We show that a determinant of Stirling cycle... \n", "4 In this paper we show how to compute the $\\L... \n", "... ... \n", "2268247 We report on measurements of the angular dep... \n", "2268248 The non-linear microwave surface impedance o... \n", "2268249 The vortex contribution to the dc field (H) ... \n", "2268250 We show that the density of states in an ani... \n", "2268251 The Ginzburg Landau theory for d_{x^2-y^2}-w... \n", "\n", " versions update_date \n", "0 [{'created': 'Mon, 2 Apr 2007 19:18:42 GMT', '... 2008-11-26 \\\n", "1 [{'created': 'Sat, 31 Mar 2007 02:26:18 GMT', ... 2008-12-13 \n", "2 [{'created': 'Sun, 1 Apr 2007 20:46:54 GMT', '... 2008-01-13 \n", "3 [{'created': 'Sat, 31 Mar 2007 03:16:14 GMT', ... 2007-05-23 \n", "4 [{'created': 'Mon, 2 Apr 2007 18:09:58 GMT', '... 2013-10-15 \n", "... ... ... \n", "2268247 [{'created': 'Mon, 26 Aug 1996 15:08:35 GMT', ... 2009-10-30 \n", "2268248 [{'created': 'Sat, 31 Aug 1996 17:34:38 GMT', ... 2016-11-18 \n", "2268249 [{'created': 'Tue, 3 Sep 1996 14:08:26 GMT', '... 2009-10-30 \n", "2268250 [{'created': 'Wed, 18 Sep 1996 07:57:29 GMT', ... 2009-10-30 \n", "2268251 [{'created': 'Wed, 25 Sep 1996 14:17:09 GMT', ... 2009-10-30 \n", "\n", " authors_parsed \n", "0 [[Balázs, C., ], [Berger, E. L., ], [Nadolsky,... \\\n", "1 [[Streinu, Ileana, ], [Theran, Louis, ]] \n", "2 [[Pan, Hongjun, ]] \n", "3 [[Callan, David, ]] \n", "4 [[Abu-Shammala, Wael, ], [Torchinsky, Alberto, ]] \n", "... ... \n", "2268247 [[Prozorov, R., ], [Konczykowski, M., ], [Schm... \n", "2268248 [[Choudhury, Durga P., , Physics Department, N... \n", "2268249 [[Willemsen, Balam A., , Physics Department,\\n... \n", "2268250 [[Hasegawa, Yasumasa, , Himeji Institute of Te... \n", "2268251 [[Enomoto, Naoki, , Okayama Univ.], [Ichioka, ... \n", "\n", " cleaned_abstracts \n", "0 fully differential calculation perturbative... \n", "1 describe new algorithm $ k,\\ell)$-pebble ga... \n", "2 evolution earth moon system describe dark m... \n", "3 determinant stirling cycle number count unl... \n", "4 paper compute $ \\lambda_{\\alpha}$ norm $ \\a... \n", "... ... \n", "2268247 report measurement angular dependence irrev... \n", "2268248 non linear microwave surface impedance patt... \n", "2268249 vortex contribution dc field h dependent mi... \n", "2268250 density state anisotropic superconductor \\n... \n", "2268251 ginzburg landau theory d_{x^2 y^2}-wave sup... \n", "\n", "[2268252 rows x 15 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_cleaned" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "df_cleaned['len_abstract'] = df_cleaned['cleaned_abstracts'].str.len()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 2268252.00\n", "mean 688.92\n", "std 315.74\n", "min 4.00\n", "25% 446.00\n", "50% 658.00\n", "75% 908.00\n", "max 4372.00\n", "Name: len_abstract, dtype: float64" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_cleaned['len_abstract'].describe()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGxCAYAAACZa0njAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABInklEQVR4nO3de3hU1b3/8c+QSUIQYjQJkYhHQeUiQhISgdZQgQIiYItIPZUqIHi0lUt75KIBBSRcJFxUBBTkXlABsXhEqxWPtrWVwIkmCJTKTQwBQoJcJclkkvX7A7N/zCRI7rOTeb+eJ09m9ppZs9Z8J/Jx77X3OIwxRgAAALA08PUAAAAA7IaABAAA4IWABAAA4IWABAAA4IWABAAA4IWABAAA4IWABAAA4IWABAAA4IWABAAA4IWABAAA4MXp6wHUZSdPnlN1flGLwyGFhzep9n5RddTG3qiPfVEb+/LH2pTMuTwISFVgjGrkQ1VT/aLqqI29UR/7ojb2RW3KxiE2AAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQkAAAALwQk2Mr0pJm+HgIAAAQk2IvLVejrIQAAQEACAADwRkACAADwQkACAADwQkACAADw4tOAlJ2drTFjxqhTp07q2rWrZs2apYKCAklSZmamhg0bptjYWPXt21efffaZx3P/+c9/qn///oqJidGQIUOUmZnp0b5q1Sp17dpVcXFxmjhxovLy8qy2goICTZw4UQkJCUpMTNSKFStqfrIAAKDO8FlAMsZozJgxysvL07p16/TCCy/ok08+0YsvvihjjEaOHKmIiAht2rRJv/zlLzVq1CgdPXpUknT06FGNHDlSAwcO1FtvvaVrr71WTzzxhIwxkqQPP/xQCxcu1LRp07R69WplZGRozpw51munpKRo165dWr16taZMmaKFCxfqgw8+8Mn7AAAA7Mfpqxc+ePCg0tPT9Y9//EMRERGSpDFjxmj27Nn62c9+pszMTL355ptq1KiRbr75Zn3++efatGmTRo8erY0bN+r222/X8OHDJUmzZs3SnXfeqe3bt6tz585as2aNhg4dqu7du0uSnnvuOY0YMULjx4+XMUYbN27Ua6+9pnbt2qldu3bat2+f1q1bpz59+vjq7QAAADbisz1IkZGRWrZsmRWOSpw/f14ZGRm67bbb1KhRI2t7fHy80tPTJUkZGRlKSEiw2kJCQtSuXTulp6erqKhIX331lUd7bGysCgsLtXfvXu3du1dut1txcXEefWdkZKi4uLiGZgsAAOoSn+1BCg0NVdeuXa37xcXFWrt2rbp06aKcnBw1bdrU4/Hh4eE6fvy4JP1o+9mzZ1VQUODR7nQ6FRYWpuPHj6tBgwa65pprFBQUZLVHRESooKBAp0+f1rXXXlsT0wUAAHWIzwKStzlz5mjPnj166623tGrVKo8AI0lBQUFyuVySpLy8vMu25+fnW/fLajfGlNkmyeq/vByOCj283P1Vd791jR3nT23sjfrYF7WxL3+sTUXmaouANGfOHK1evVovvPCCWrVqpeDgYJ0+fdrjMS6XSw0bNpQkBQcHlwozLpdLoaGhCg4Otu57t4eEhKioqKjMNklW/+UVHt6kQo/3db91QaAzQBER9p2/P9emLqA+9kVt7IvalM3nASk5OVlvvPGG5syZo7vvvluSFBUVpf3793s8Ljc31zpsFhUVpdzc3FLtbdu2VVhYmIKDg5Wbm6ubb75ZkuR2u3X69GlFRkbKGKNTp07J7XbL6bw4/ZycHDVs2FChoaEVGvvJk+f0w4lz1cLhuPhBre5+65JCd5Fyc8/5ehilUBt7oz72RW3syx9rUzLn8vBpQFq4cKHefPNNzZ8/3+MMspiYGC1dulT5+fnWXp20tDTFx8db7Wlpadbj8/LytGfPHo0aNUoNGjRQ+/btlZaWps6dO0uS0tPT5XQ61aZNG0kX1ySlp6dbC7nT0tLUvn17NWhQsTXrxqhGPlQ11W9dYee5+3tt7I762Be1sS9qUzafncV24MABLV68WP/1X/+l+Ph45eTkWD+dOnVSs2bNlJSUpH379mnp0qXauXOnBg0aJEm6//779cUXX2jp0qXat2+fkpKS1Lx5cysQDR48WMuXL9fWrVu1c+dOTZ06VQ888IBCQkIUEhKiAQMGaOrUqdq5c6e2bt2qFStWaMiQIb56KwAAgM34bA/Sxx9/rKKiIr3yyit65ZVXPNr+/e9/a/HixZo0aZIGDhyoG2+8UYsWLVJ0dLQkqXnz5nr55Zc1c+ZMLVq0SHFxcVq0aJEcP6y+6tevn7KysjR58mS5XC717t1b48ePt/pPSkrS1KlTNXToUDVu3FijR49W7969a2/yAADA1hzGsGOtsnJzq38NUkREk2rvty6ZPPY5TZs3xdfDKIXa2Bv1sS9qY1/+WJuSOZcHX1YLAADghYAEAADghYAEAADghYAEAADghYAEAADghYAEAADghYAEAADghYAEAADghYCEGjN7coqmJ8309TAAAKgwAhKq1aWhyOUqlMtV6NFOYAIA1AUEJFSrskKRJI/QBACA3RGQUKMCAy9+HzLBCABQlxCQUCsCA52aPTnF18MAAKBcCEioNZfuRWItEgDAzghIqBaXBp7AQKfmJc+3bpfsOSo53CZJxpjaHSAAABVAQEK18F5jVHjJ/bLWHwUGOtmLBACwLQISatWle5RYuA0AsCsCEqrFpYfVrqQkGJWEJfYkAQDsxnnlhwDlU1iJPUIuV6EKC901MBoAACqPPUgAAABeCEjwqUvPbAMAwC4ISPA5zmgDANgNAQm2wBltAAA7ISABAAB4ISDBFkouE8Cp/wAAO2CFLKpk9uQUOatpoXXJZQI49R8A4GvsQUKVuFyFlbr+UXmxJwkA4AsEJNhSo0YNNXtyCou3AQA+QUCCbRGOAAC+QkBCpZV86SwAAPUNAQmVxh4eAEB9ZYuA5HK51L9/f6WmpkqSnn76abVu3brUz5AhQ6znJCQklGr//vvvJUkFBQWaOHGiEhISlJiYqBUrVni8XmZmpoYNG6bY2Fj17dtXn332We1NFgAA2J7PT/MvKCjQ2LFjtW/fPmvbpEmTNHbsWOt+VlaWHn74YSsgZWdn69y5c9q6dasaNmxoPa5Ro0aSpJSUFO3atUurV6/W0aNH9dRTTyk6Olp9+vSRMUYjR45Uq1attGnTJm3dulWjRo3S+++/r+jo6FqaNcqrUaOGmp40U8/MmujroQAA/IhPA9L+/fs1duxYGWM8tjdp0kRNmjSx7j/99NPq06ePevbsKUk6cOCAIiMjdcMNN5Tq88KFC9q4caNee+01tWvXTu3atdO+ffu0bt069enTR9u2bVNmZqbefPNNNWrUSDfffLM+//xzbdq0SaNHj67ZCaNSjDGEJABArfLpIbbt27erc+fOWr9+/WUf8/nnn2vHjh168sknrW379+9XixYtynz83r175Xa7FRcXZ22Lj49XRkaGiouLlZGRodtuu83a21TSnp6eXvUJocaUhCQAAGqDT/cgDR48+IqPWbp0qe677z41a9bM2nbgwAHl5eXp4Ycf1qFDh9S2bVtNnDhRLVq0UE5Ojq655hoFBQVZj4+IiFBBQYFOnz6tnJwcNW3a1OM1wsPDdfz48QqP3+Go8FPK1V9191tfGGN89t5QG3ujPvZFbezLH2tTkbn6fA3Sj8nMzNS2bds0adIkj+0HDx7UmTNn9OSTT6px48Z67bXXNGzYML333nvKy8vzCEeSrPsul+uy7S6Xq8LjCw9vcuUHVUJN9VvdAp0BkiSnM0Ayxvp9pW2VbZekiAjfvjd1pTb+ivrYF7WxL2pTNlsHpA8//FBt27bVLbfc4rF9+fLlKiws1FVXXSVJmjt3ru666y598sknCg4OLhV2Su43bNhQwcHBOn36dKn2Sxd7l9fJk+fktXyqShyOix/U6u63phS6iy7ecDgu3i75faVtlW2XlJt7rhZmVlpdq42/oT72RW3syx9rUzLn8rB1QPr73/+un//856W2BwUFeewFCg4OVvPmzZWdna2OHTvq1KlTcrvdcjovTi8nJ0cNGzZUaGiooqKitH//fo/+cnNzSx12Kw9jVCMfqprqtz7w9ftCbeyN+tgXtbEvalM2W1wHqSzGGH311Vfq2LFjqe09e/bU22+/bW27cOGCDh8+rJYtW6pt27ZyOp0ei67T0tLUvn17NWjQQDExMdq9e7fy8/M92mNiYmp8TgAAoG6wbUDKysrS999/X+rwmsPhULdu3fTyyy8rNTVV+/bt04QJE3TdddfprrvuUkhIiAYMGKCpU6dq586d2rp1q1asWGFdQ6lTp05q1qyZkpKStG/fPi1dulQ7d+7UoEGDfDFNAABgQ7Y9xHby5ElJ0tVXX12qbfz48XI6nRo7dqzOnz+vLl26aOnSpQoIuLhoOCkpSVOnTtXQoUPVuHFjjR49Wr1795YkBQQEaPHixZo0aZIGDhyoG2+8UYsWLeIikXVAYKBTsyenqLDQzTWRAAA1ymG8r9KIcsvNrf5F2hERTaq935qS/PQMSReDS2Gh2/p9pW1VbS8sdGvavCm1Ote6Vht/Q33si9rYlz/WpmTO5WHbQ2ywt3nJ8309BAAAagwBCZVS6Cr02WsHBjo1L3k+V9YGANQYAhLqpEJXoVw+DGkAgPqNgIQ6KzDQyV4kAECNICChTmMvEgCgJhCQUKcFBtr2ShUAgDqMgIR6gUNtAIDqREBChc2enOLrIZRijCEkAQCqDQEJFWandT8lV9eW7DUuAEDdRkBChdhx7xHBCABQ3QhIqBDCCADAHxCQAAAAvBCQAAAAvBCQUG9wZW0AQHUhIKFeYY0UAKA6EJBQr7AXCQBQHQhIKLd5yfN9PYQfVfK1I+xFAgBUFQEJ5VZI8AAA+AkCEgAAgBcCEgAAgBcCEsrFjl8xcjks1AYAVBUBCeVS1xY+G2MISQCASiMgod7hbDYAQFURkAAAALwQkAAAALwQkAAAALwQkOCBhc0AABCQ4IWFzQAAEJAAAABKISDhiuz+JbUAAFQ3WwQkl8ul/v37KzU11do2ffp0tW7d2uNn7dq1VvuWLVvUs2dPxcTEaOTIkfruu++sNmOM5s6dqy5duqhTp05KSUlRcXGx1X7q1CmNHj1acXFx6tGjh955553amWgdxZfUAgD8jdPXAygoKNDYsWO1b98+j+0HDhzQ2LFjdd9991nbGjduLEnauXOnJk2apOeee05t2rTRjBkzlJSUpCVLlkiSVq5cqS1btmjhwoVyu90aP368wsPDNWLECElSUlKS8vPztX79emVkZOiZZ55RixYt1KFDh1qaNQAAsDOf7kHav3+/HnjgAX377bel2g4cOKDbbrtNkZGR1k9ISIgkae3atbrnnns0YMAAtWnTRikpKfrrX/+qzMxMSdKaNWs0ZswYJSQkqEuXLho3bpzWrVsnSfr222/1ySefaPr06WrVqpV+9atf6Re/+IVef/312ps4agXfyQYAqCyfBqTt27erc+fOWr9+vcf28+fPKzs7WzfddFOZz8vIyFBCQoJ1v1mzZoqOjlZGRoays7N17Ngx3XHHHVZ7fHy8srKydOLECWVkZKhZs2Zq3ry5R/uXX35ZvZODLRhjfD0EAEAd5NNDbIMHDy5z+4EDB+RwOPTqq6/qb3/7m8LCwvTII49Yh9tOnDihpk2bejwnPDxcx48fV05OjiR5tEdEREiS1V7Wc7Ozs6ttXgAAoG7z+Rqkshw8eFAOh0MtW7bUQw89pB07dujZZ59V48aN1atXL+Xn5ysoKMjjOUFBQXK5XMrPz7fuX9omXVwMnpeXd9nnVpTDUeGnlKu/6u63suOQpOefTfHdQKpJdbyfdqkNykZ97Iva2Jc/1qYic7VlQBowYIC6d++usLAwSVKbNm30zTff6I033lCvXr0UHBxcKtC4XC6FhIR4hKHg4GDrtiSFhIRc9rkNGzas8DjDw5tU+Dm+7Lc8Ap0Bioj4/69viovlDHRKxsjpDJB+OGRV1u3ybqvpdo9tgU7Nema25r06vVreH1/WBldGfeyL2tgXtSmbLQOSw+GwwlGJli1batu2bZKkqKgo5ebmerTn5uYqMjJSUVFRkqScnBxrnVHJYbeS9ss9t6JOnjyn6lzi4nBc/KBWd78VUeguUm7uOY/7cjg8f/8w2FK3y7utptu9tl24kO8xp8qwQ21wedTHvqiNffljbUrmXB62DEgvvfSSvvzyS61atcratnfvXrVs2VKSFBMTo7S0NA0cOFCSdOzYMR07dkwxMTGKiopSdHS00tLSrICUlpam6OhoNW3aVLGxscrKytLx48d13XXXWe2xsbEVHqcxqpEPVU31W5HXl6TZk+v+4bUS1fV++ro2+HHUx76ojX1Rm7LZ4kKR3rp3764dO3Zo+fLl+vbbb/X6669r8+bNGj58uCTpwQcf1DvvvKONGzdq7969mjBhgrp166YbbrjBap87d65SU1OVmpqqefPmaciQIZKkG264QYmJiRo/frz27t2rjRs3asuWLfrNb37js/naVX35XjZO9wcAVJQt9yB16NBBL730khYsWKCXXnpJ119/vebNm6e4uDhJUlxcnKZNm6YFCxbozJkzuvPOO5WcnGw9f8SIETp58qRGjRqlgIAADRo0SMOGDbPaU1JSNGnSJD3wwAOKjIzUzJkzuUhkPVdfwh4AoHY4DBeKqbTc3OpfgxQR0aTa+62IyWOf07R5UyRJyU/PkHRxD0xhodv6fem2K7VX5jk19ZoOh0PPzJpYqffFDrXB5VEf+6I29uWPtSmZc3nY8hAbUBPYiwQAKC8CEgAAgBcCEgAAgBcCEgAAgBcCEgAAgBcCEvxGo0YNuR4SAKBcCEjwK5zJBgAoDwISAACAFwIS/Ep5vnaEw3AAAAIS/I4x5kdDEIfhAAAEJJRpXvJ8Xw+hRhGCAAA/hoCEMhUSIAAAfoyABL8TGOj09RAAADZHQAIAAPBCQAIAAPBCQIKHwECnZk9O8fUwAADwKQISSuEMLwCAvyMgwS+V54KRAAD/RUCC32JPGQDgcghIAAAAXghIAAAAXghI8FusQwIAXA4BCX7NGOPrIQAAbIiABAAA4IWABAAA4IWABL/GOiQAQFkISPB7XA8JAOCNgAS/x14kAIA3AhIs85Ln+3oIPsNeJADApQhIsBQSEgAAkERAAgAAKMUWAcnlcql///5KTU21tqWnp+vXv/614uLidPfdd2vjxo0ez/nFL36h1q1be/x8/fXXki5e/G/u3Lnq0qWLOnXqpJSUFBUXF1vPPXXqlEaPHq24uDj16NFD77zzTu1MFLbFOiQAwKWcvh5AQUGBxo4dq3379lnbcnJy9F//9V968MEH9fzzz2v37t1KSkpSZGSkunXrpqKiIn3zzTdau3atbrrpJut511xzjSRp5cqV2rJlixYuXCi3263x48crPDxcI0aMkCQlJSUpPz9f69evV0ZGhp555hm1aNFCHTp0qNW5w15YhwQAKOHTgLR//36NHTu21Nc9bN26VREREXryySclSTfddJNSU1P17rvvqlu3bjpy5IgKCwvVoUMHBQcHl+p3zZo1GjNmjBISEiRJ48aN00svvaQRI0bo22+/1SeffKKPP/5YzZs3V6tWrZSenq7XX3+dgAQAACT5+BDb9u3b1blzZ61fv95je9euXTVr1qxSjz9//ryki8GqWbNmZYaj7OxsHTt2THfccYe1LT4+XllZWTpx4oQyMjLUrFkzNW/e3KP9yy+/rK5pAQCAOs6ne5AGDx5c5vbmzZt7BJiTJ0/qvffe0+jRoyVJBw4cUGBgoB5//HHt2rVLLVq00IQJE9ShQwfl5ORIkpo2bWo9PyIiQpJ0/Phx5eTkeLRJUnh4uLKzsys8foejwk8pV3/V3S/KJzDQedkaUBt7oz72RW3syx9rU5G5+nwN0pXk5+dr9OjRioiI0H/+539Kkg4dOqQzZ87oV7/6lcaMGaMNGzZo6NChev/995Wfny9JCgoKsvooue1yuZSXl+fRVtLucrkqPLbw8CaVnZZP+r0SpzNA+uFwZ1m3K9NeE33W1GtKUkREEwU6AxQRUXYNfFUblA/1sS9qY1/Upmy2Dkjff/+9nnjiCX3zzTd6/fXXFRISIklKTk5Wfn6+GjduLEmaOnWqvvjiC73zzjv66U9/KuliGCo5BFcSfkJCQhQcHFwqDLlcLjVs2LDC4zt58py8lk9VicNx8YNa3f2Wl9tdpEJ3kTWYUrfL2nal9so8x1evKSk395wK3UXKzT3n8d74ujb4cdTHvqiNffljbUrmXB62DUjnz5/Xo48+qm+//VarV6/2OFvN6XRa4UiSHA6HWrZsqezsbEVFRUm6eCZcyWG6ksNukZGRioqKUm5ursdr5ebmKjIyssJjNEY18qGqqX5xZSXv++Xef2pjb9THvqiNfVGbstniOkjeiouLNWrUKB05ckR//OMfdeutt3q0P/zww1q4cKHH4//973+rZcuWioqKUnR0tNLS0qz2tLQ0RUdHq2nTpoqNjVVWVpaOHz/u0R4bG1vj87Kz2ZNTfD0EnwsMdPI+AAAk2XQP0ltvvaXU1FS98sorCg0NtfYABQYGKiwsTD169NCiRYvUtm1btWjRQmvWrNG5c+d03333SZIefPBBzZ07V9ddd50kad68eRo+fLgk6YYbblBiYqLGjx+vSZMm6auvvtKWLVu0du1a30zWJlyuQgUG2vLjUKu4FhIAQLJpQPrwww9VXFysxx9/3GN7p06d9Mc//lHDhg1TQUGBpk+frtzcXMXExGjlypXWYbcRI0bo5MmTGjVqlAICAjRo0CANGzbM6iclJUWTJk3SAw88oMjISM2cOZNrIAEAAIvDeF+lEeWWm1v9i7QjIppUe7/lkfz0DAUGOlVY6JakMm9Xpr0m+qzp1ywsdGvavCke748va4Mroz72RW3syx9rUzLn8rDlGiTAlzjUCAAgIAEAAHghIAEAAHip9oD03XffVXeXAAAAtapSAalt27ZlBqGsrCz9/Oc/r/KgAF8KDHRqetJMXw8DAOBD5V6NunnzZr399tuSJGOMRo4cqcDAQI/HnDhxolJXpAbshushAYB/K3dA6tWrl44cOSJJ2r59u2JjY3XVVVd5PKZRo0bq1atX9Y4QAACglpU7IF111VUaNWqUJOn6669X3759rS+DRd02L3m+r4cAAICtVOqCL/fdd58OHz6sXbt2qbCw9KGIAQMGVHVcqCWzJ6eIa4UCAOCpUgFp2bJlmjt3rq6++upSh9kcDgcBqQ7hO9h+3PSkmXpm1kRfDwMAUMsq9S/jihUrNH78eI0YMaK6xwPYCou1AcA/Veo0/4KCAvXu3bu6xwLYRmCgU7Mnp/h6GAAAH6lUQLr33nv1+uuvs3aljiMA/Dj2HgGA/6rUIbbz58/rrbfe0pYtW9S8efNS10Nas2ZNtQwONYsAcGWszwIA/1Sp//rfdNNN+u1vf1vdYwEAALCFSgWkkushAfVdydeOPPs8Z7IBgD+pVEBKSkr60fZZs2ZVajCAHXEoEgD8T6UWaXtzu906dOiQ3n//fV177bXV0SUAAIDPVGoP0uX2EC1btkxff/11lQYEAADga9WyB6lEnz599NFHH1VnlwAAALWu2gLShQsXtGHDBl1zzTXV1SVgC4GBTiU/PdPXwwAA1KJKHWJr06aNHA5Hqe3BwcGaPn16lQcF2I0xRk+NnqrxU8b6eigAgFpQqYDkfSFIh8OhwMBA3XLLLWrcuHG1DAywGzdnswGA36hUQOrUqZMk6ZtvvtGBAwdUXFysFi1aEI4AAEC9UKmAdPbsWSUlJenjjz/W1VdfraKiIn3//fe64447tGjRIjVp0qS6xwkAAFBrKrVIe/r06Tp+/Ljef/99paam6v/+7//07rvv6sKFC1wkEgAA1HmVCkj/+7//q6lTp6ply5bWtltuuUWTJ0/Wxx9/XG2DAwAA8IVKBaTg4GA1aFD6qQ6HQ0VFRVUeFGrevOT5vh5CnTU9iVP+AaC+q1RA6tGjh5577jl9++231rZvvvlG06dP11133VVtg0PNKeSMrApzBjr1/LMpfDcbAPiBSi3SHj9+vEaOHKm7775boaGhkqQzZ87oZz/7mZ599tlqHSBgJ4QjAPAPFd6DdPjwYYWEhOiPf/yjNm/erClTpmjmzJl67733tHTpUoWFhVV4EC6XS/3791dqaqq1LTMzU8OGDVNsbKz69u2rzz77zOM5//znP9W/f3/FxMRoyJAhyszM9GhftWqVunbtqri4OE2cOFF5eXlWW0FBgSZOnKiEhAQlJiZqxYoVFR4zAACov8odkIwxmj59uu655x59+eWXkqTWrVurb9++2rRpk/r376/nn39expgKDaCgoEBPPvmk9u3b5/FaI0eOVEREhDZt2qRf/vKXGjVqlI4ePSpJOnr0qEaOHKmBAwfqrbfe0rXXXqsnnnjCeu0PP/xQCxcu1LRp07R69WplZGRozpw5Vv8pKSnatWuXVq9erSlTpmjhwoX64IMPKjRuAABQf5U7IK1Zs0bvv/++Fi1aZF0ossTixYu1aNEi/elPf9Ibb7xR7hffv3+/HnjgAY+1TJK0bds2ZWZmatq0abr55pv1+OOPKzY2Vps2bZIkbdy4UbfffruGDx+uW2+9VbNmzVJWVpa2b99ujXXo0KHq3r27OnTooOeee06bNm1SXl6eLly4oI0bN2rSpElq166devXqpUcffVTr1q0r97jh3wIDnSzUBoB6rtwBacOGDXr22WfVvXv3Mtt79OihcePGVSggbd++XZ07d9b69es9tmdkZOi2225To0aNrG3x8fFKT0+32hMSEqy2kJAQtWvXTunp6SoqKtJXX33l0R4bG6vCwkLt3btXe/fuldvtVlxcnEffGRkZKi4uLvfY4b8CA52sRQKAeq7ci7SzsrLUoUOHH31Mly5dNGPGjHK/+ODBg8vcnpOTo6ZNm3psCw8P1/Hjx6/YfvbsWRUUFHi0O51OhYWF6fjx42rQoIGuueYaBQUFWe0REREqKCjQ6dOnde2115Z7/HXV7Mkpvh4CAAC2Vu6AFB4erqysLF1//fWXfczx48crtUjbW15enkeAkaSgoCC5XK4rtufn51v3y2o3xpTZJsnqv7wcjgo9vNz9VXe/3lyuQgUGVuoERr9VVm1quk4ov9r620HFURv78sfaVGSu5f5XslevXnr55Ze1YsUKBQYGlmp3u91auHChEhMTy//qlxEcHKzTp097bHO5XGrYsKHV7h1mXC6XQkNDFRwcbN33bg8JCVFRUVGZbZKs/ssrPLxmvnOupvotEegMkNMZIP2wqL3kdlnbqtpeE3366jUlyRlw8b0LdAYoIoLvHLSbmv7bQeVRG/uiNmUrd0B64oknNGjQIA0cOFAPP/ywbr/9djVp0kRnzpzR7t27tXbtWn3//fdKSan64ZuoqCjt37/fY1tubq512CwqKkq5ubml2tu2bauwsDAFBwcrNzdXN998s6SL4e306dOKjIyUMUanTp2S2+2W03lx+jk5OWrYsKF1TafyOnny3KX/dlaZw3Hxg1rd/XordBdJDsfF3z+88GW3VbW9Jvr0wWs6HBcvFOku+v/tubnnKl8EVKva+ttBxVEb+/LH2pTMuTzKHZBCQ0O1YcMGzZ07V88//7x1XSFjjJo0aaK+fftq9OjRioiIqNyoLxETE6OlS5cqPz/f2quTlpam+Ph4qz0tLc16fF5envbs2aNRo0apQYMGat++vdLS0tS5c2dJUnp6upxOp9q0aXNx0k6n0tPTrYXcaWlpat++fZlfn/JjjFGNfKhqql9UXkk9Lq0LNbIf/nbsi9rYF7UpW4UWooSFhWn69OmaPHmyMjMzdfbsWYWFhek//uM/FBAQUG2D6tSpk5o1a6akpCQ98cQT+uSTT7Rz507NmjVLknT//fdr+fLlWrp0qbp3765FixapefPmViAaPHiwJk+erFatWqlp06aaOnWqHnjgAYWEhEiSBgwYoKlTp2rmzJk6ceKEVqxYYfUNlEfJqf7PzJro66EAAGpApVbqBgUFWYevakJAQIAWL16sSZMmaeDAgbrxxhu1aNEiRUdHS5KaN2+ul19+WTNnztSiRYsUFxenRYsWyfHD6qt+/fopKytLkydPlsvlUu/evTV+/Hir/6SkJE2dOlVDhw5V48aNNXr0aPXu3bvG5mMnnMFWfTjVHwDqL4ep6KWvYcnNrf41SBERTaq930slP33xMgyBgU4VFro9bpe1rartNdGnr14zJCRYeXkF1rbCQremzZtSPYVBldTG3w4qh9rYlz/WpmTO5VHh72IDcBFX1AaA+ouABFQBh9kAoH4iIAEAAHghIAFVwBXJAaB+IiABVcA6JAConwhIQBWxDgkA6h8CEgAAgBcCEgAAgBcCEgAAgBcCElBFLNQGgPqHgORH5iXP9/UQ6i1jDCEJAOoRApIfKeRsqxrF2WwAUH8QkIBqwAUjAaB+ISABAAB4ISABAAB4ISABAAB4ISAB1YTT/QGg/iAgAdWIM9kAoH4gIAEAAHghIPmJ2ZNTfD0EAADqDAKSn+DQDwAA5UdAAgAA8EJAAqpRYKCTw5kAUA8QkIBqxhfXAkDdR0ACagBrvgCgbiMgAQAAeCEg+YF5yfN9PQS/w1W1AaBuIyD5gUIO9/gEh9kAoO4iIAEAAHghIAEAAHghIAE1pOSaSKxFAoC6x7YB6e2331br1q1L/bRp00aS9Lvf/a5U2yeffGI9f9WqVeratavi4uI0ceJE5eXlWW0FBQWaOHGiEhISlJiYqBUrVtT6/OAfjDGsRQKAOsjp6wFcTt++fdW1a1frvtvt1tChQ9WtWzdJ0oEDBzRnzhz95Cc/sR5z9dVXS5I+/PBDLVy4UHPmzFF4eLiSkpI0Z84cTZ48WZKUkpKiXbt2afXq1Tp69KieeuopRUdHq0+fPrU3wVrCVZ0BAKg42wakhg0bqmHDhtb9JUuWyBijcePGyeVy6ciRI2rfvr0iIyNLPXfNmjUaOnSounfvLkl67rnnNGLECI0fP17GGG3cuFGvvfaa2rVrp3bt2mnfvn1at25dvQxILlehAgNtW2YAAGzJtofYLnX69Gm99tprGjt2rIKCgnTw4EE5HA7dcMMNpR5bVFSkr776SgkJCda22NhYFRYWau/evdq7d6/cbrfi4uKs9vj4eGVkZKi4uLhW5gMAAOytTuxaeOONN9S0aVNrD8/BgwfVuHFjTZgwQdu3b9d1112n0aNH66677tLZs2dVUFCgpk2bWs93Op0KCwvT8ePH1aBBA11zzTUKCgqy2iMiIlRQUKDTp0/r2muvLfe4HI7qm+Ol/VV3v6i6qtaGmtYs/nbsi9rYlz/WpiJztX1AKjkk9uijj1rbDh48qPz8fCUmJuqxxx7TRx99pN/97ndav369IiIiJMkjAJXcd7lcMsaU2SZJLperQmMLD29SmSnVar+BzgA5nQGSMdZvSWXeron2+vSakuQMCKhwn4HOAEVE1MxnBZ5q6m8SVUdt7IvalM32Aemrr75Sdna2+vXrZ2174okn9PDDD1uLstu0aaPdu3drw4YN+u///m9JpcOOy+VSSEiIioqKymyT5LHmqTxOnjx36b+dVeZwXPygVme/he4iyeHw/P3Di5W6XRPt9eQ1HQ7JGeiUu6jirymHQ79/NEnPPj+x/IVDhdTE3w6qB7WxL3+sTcmcy8P2Aenvf/+7EhISrDAkSQ0aNPC4L0ktW7bU/v37FRYWpuDgYOXm5urmm2+WdPEMuNOnTysyMlLGGJ06dUput1tO58Xp5+TkqGHDhgoNDa3Q2IxRjXyoaqpfVF5JPSpbF5erkJrWAv527Iva2Be1KZvtF2nv3LlTHTt29Nj29NNPKykpyWPb3r171bJlSzVo0EDt27dXWlqa1Zaeni6n06k2bdqobdu2cjqdSk9Pt9rT0tLUvn17NWhg+7cDAADUAtsngn379umWW27x2NajRw+9++672rx5sw4fPqyFCxcqLS1NDz30kCRp8ODBWr58ubZu3aqdO3dq6tSpeuCBBxQSEqKQkBANGDBAU6dO1c6dO7V161atWLFCQ4YM8cX0AACADdn+EFtubm6pQ1+9e/fWlClT9Morr+jo0aO69dZbtWzZMjVv3lyS1K9fP2VlZWny5MlyuVzq3bu3xo8fbz0/KSlJU6dO1dChQ9W4cWONHj1avXv3rtV51QYuEmkfXIsKAOoWhzEceays3NzqX6QdEdGk2vpNfnqGpIv/OBcWuq3fl26r6fb69JohIcHKyyuodJ9ud5GemcVC7ZpQ3X87qD7Uxr78sTYlcy4P2x9iA+oLvpMNAOoOAhIAAIAXAhJQSwIDnZqeNNPXwwAAlAMBCahFHGYDgLqBgAQAAOCFgATUosBAJ5dfAIA6gIAE1DIOswGA/RGQAAAAvBCQAAAAvBCQgFrG6f4AYH8EJMAHStYhEZQAwJ4ISIAPlJzNVtaCbUITAPgeAQnwkcudzcZZbgDgewSkempe8nxfDwEAgDqLgFRPFbIXAgCASiMgAT4UGOj09RAAAGUgIAE+xCn/AGBPBCTAx1iUDQD2Q0ACfIwvsAUA+yEg1UP8Y1v3sBcJAOyFgFQP8Y8tAABVQ0ACbIDF2gBgLwQkwCaMMRweBQCbICABNsLhUQCwBwISAACAFwJSPcN3sAEAUHUEpHqG72ADAKDqCEiAzTRq1JAz2gDAxwhIgA2xWBsAfIuABAAA4MXWAemjjz5S69atPX7GjBkjSdqzZ49+9atfKSYmRvfff7927drl8dwtW7aoZ8+eiomJ0ciRI/Xdd99ZbcYYzZ07V126dFGnTp2UkpKi4uLiWp0b8GNKvp+NQ20A4Bu2Dkj79+9X9+7d9dlnn1k/06dP14ULF/TYY48pISFBb7/9tuLi4vT444/rwoULkqSdO3dq0qRJGjVqlNavX6+zZ88qKSnJ6nflypXasmWLFi5cqAULFujdd9/VypUrfTVNoEwuVyGH2gDAR2wdkA4cOKBWrVopMjLS+gkNDdX777+v4OBgTZgwQTfffLMmTZqkq666Sh988IEkae3atbrnnns0YMAAtWnTRikpKfrrX/+qzMxMSdKaNWs0ZswYJSQkqEuXLho3bpzWrVvny6kCAAAbsX1Auummm0ptz8jIUHx8vBwOhyTJ4XCoY8eOSk9Pt9oTEhKsxzdr1kzR0dHKyMhQdna2jh07pjvuuMNqj4+PV1ZWlk6cOFGj86lpfE0FAADVw7YByRijQ4cO6bPPPtPdd9+tnj17au7cuXK5XMrJyVHTpk09Hh8eHq7jx49Lkk6cOHHZ9pycHEnyaI+IiJAk6/l1FYdj6p/AQKevhwAAfsm2//U9evSo8vLyFBQUpBdffFFHjhzR9OnTlZ+fb22/VFBQkFwulyQpPz//su35+fnW/UvbJFnPL68fdmBVm5L+qrtfVJ0va8Pn4cr427EvamNf/libiszVtgHp+uuvV2pqqq6++mo5HA61bdtWxcXFGj9+vDp16lQqzLhcLjVs2FCSFBwcXGZ7SEiIRxgKDg62bktSSEhIhcYYHt6kUnOrqX4DnQFyOgMkY6zfkn50W02316fXlCRnQEDtzjPQqVnPzNa8V6eX/4Pgx2rqbxJVR23si9qUzbYBSZLCwsI87t98880qKChQZGSkcnNzPdpyc3Otw2ZRUVFltkdGRioqKkqSlJOTo+bNm1u3JSkyMrJC4zt58tyl/3ZWmcNx8YNa2X4L3UWSw+H5+4eOL7utptvryWs6HBfDirvIB/MsdOv3jybp2ecnll14VPlvBzWH2tiXP9amZM7lYds1SH//+9/VuXNn5eXlWdv+9a9/KSwsTPHx8fryyy9lfqioMUZffPGFYmJiJEkxMTFKS0uznnfs2DEdO3ZMMTExioqKUnR0tEd7WlqaoqOjS61buhJjqv+nsv0+/ywLtGvSpbXxzesbJT89s0Y+c/Xlp6Q+/Njvh9rY98cfa1Netg1IcXFxCg4O1jPPPKODBw/qr3/9q1JSUvToo4+qT58+Onv2rGbMmKH9+/drxowZysvL0z333CNJevDBB/XOO+9o48aN2rt3ryZMmKBu3brphhtusNrnzp2r1NRUpaamat68eRoyZIgvp1tlLNCu/6gxANQe2x5ia9y4sZYvX66ZM2fq/vvv11VXXaVf//rXevTRR+VwOLRkyRJNmTJFGzZsUOvWrbV06VI1atRI0sVwNW3aNC1YsEBnzpzRnXfeqeTkZKvvESNG6OTJkxo1apQCAgI0aNAgDRs2zEczBSpmetJMPTOLw20AUJNsG5Ak6dZbb73sFa47dOigP/3pT5d97sCBAzVw4MAy2wICApSUlORxdW3AzgIDnSosdEtiTxIA1AbbHmID4Knk+9kAADWPgATUIS5XIRePBIBaQEACAADwQkACAADwQkAC6pjAQKemJ8309TAAoF4jIAF1EGeyAUDNIiABdRB7kQCgZhGQgDqKvUgAUHMISAAAAF4ISAAAAF4ISPXAvOT5vh4CfIALRgJAzSEg1QOFrEXxSyzUBoCaQ0AC6jAWagNAzSAgAQAAeCEg1XF8u7t/4zAbANQMAlIdxyEWGGMISQBQzQhIQD1AUAaA6kVAAgAA8EJAAgAA8EJAqsNYoA0AQM0gINVhrDtBCa6qDQDVi4AEAADghYAE1ANcDwkAqhcBCagnOOQKANWHgAQAAOCFgATUExxmA4DqQ0AC6hEOswFA9SAg1VHzkuf7eggAANRbBKQ6qpA9BSgDh9kAoHoQkIB6hsNsAFB1BCQAAAAvtg5I2dnZGjNmjDp16qSuXbtq1qxZKigokCRNnz5drVu39vhZu3at9dwtW7aoZ8+eiomJ0ciRI/Xdd99ZbcYYzZ07V126dFGnTp2UkpKi4uLiWp8fAACwJ9t+gZMxRmPGjFFoaKjWrVunM2fOaOLEiWrQoIGeeuopHThwQGPHjtV9991nPadx48aSpJ07d2rSpEl67rnn1KZNG82YMUNJSUlasmSJJGnlypXasmWLFi5cKLfbrfHjxys8PFwjRozwyVyB6sT3sgFA1dl2D9LBgweVnp6uWbNm6dZbb1VCQoLGjBmjLVu2SJIOHDig2267TZGRkdZPSEiIJGnt2rW65557NGDAALVp00YpKSn661//qszMTEnSmjVrNGbMGCUkJKhLly4aN26c1q1b57O5AgAAe7FtQIqMjNSyZcsUERHhsf38+fM6f/68srOzddNNN5X53IyMDCUkJFj3mzVrpujoaGVkZCg7O1vHjh3THXfcYbXHx8crKytLJ06cqJG5VLfZk1N8PQQAAOo12+6LDw0NVdeuXa37xcXFWrt2rbp06aIDBw7I4XDo1Vdf1d/+9jeFhYXpkUcesQ63nThxQk2bNvXoLzw8XMePH1dOTo4kebSXhLDjx4+Xet6PcTgqPb0f7e9K/bpchRxGqWXlrY1d1JVxVpe6Vh9/Qm3syx9rU5G51pl/ZefMmaM9e/borbfe0u7du+VwONSyZUs99NBD2rFjh5599lk1btxYvXr1Un5+voKCgjyeHxQUJJfLpfz8fOv+pW2S5HK5KjSm8PAmVZxV5foNdAbI6QyQjJGkMm+Xd1tNt9en15QkZ0DZ772d5ilJERE189m0u5r6m0TVURv7ojZlqxMBac6cOVq9erVeeOEFtWrVSrfeequ6d++usLAwSVKbNm30zTff6I033lCvXr0UHBxcKuy4XC6FhIR4hKHg4GDrtiRrDVN5nTx57tJ/k6rM4bj4Qb1Sv4XuIsnhuPj7hyeWul3ebTXdXk9e0+GQnIFOuYvsP8/AQKd+/2iSnn1+ovxFef92UPuojX35Y21K5lwetg9IycnJeuONNzRnzhzdfffdkiSHw2GFoxItW7bUtm3bJElRUVHKzc31aM/NzVVkZKSioqIkSTk5OWrevLl1W7q47qkijFGNfKhqql9UXkk96kpdXK7COjPW6sTfjn1RG/uiNmWz7SJtSVq4cKHefPNNzZ8/X/369bO2v/TSSxo2bJjHY/fu3auWLVtKkmJiYpSWlma1HTt2TMeOHVNMTIyioqIUHR3t0Z6Wlqbo6OgKrT8C7IyvHAGAqrHtHqQDBw5o8eLFeuyxxxQfH2/t5ZGk7t27a+nSpVq+fLl69eqlzz77TJs3b9aaNWskSQ8++KAefvhhxcbGqn379poxY4a6deumG264wWqfO3eurrvuOknSvHnzNHz48NqfJFCD+MoRAKg82wakjz/+WEVFRXrllVf0yiuveLT9+9//1ksvvaQFCxbopZde0vXXX6958+YpLi5OkhQXF6dp06ZpwYIFOnPmjO68804lJydbzx8xYoROnjypUaNGKSAgQIMGDSq1RwoAAPgv2wakxx57TI899thl23v27KmePXtetn3gwIEaOHBgmW0BAQFKSkpSUlJSlccJAADqH1uvQUJp85Ln+3oIqCO4VhYAVB4BqY4pZF0JAAA1joAEAADghYAEAADghYAE1FNcCwkAKo+ABNRjXAsJACqHgAQAAOCFgATUYxxmA4DKISAB9RyH2QCg4ghIdcjsySm+HgLqIPYiAUDFEZDqEPYEoLL47ABAxRCQAAAAvBCQAAAAvBCQAD/AF9cCQMUQkAAAALwQkAAAALwQkOoITvFHVXCqPwBUDAGpjuA0bVQVnyEAKD8CEuAn2IsEAOVHQAL8CHuRAKB8CEgAAABeCEiAH+EwGwCUDwEJ8DMcZgOAKyMgAX6Gq2oDwJURkOqAecnzfT0EAAD8CgGpDijkkAiqEeuQAODKCEiAHzLGEJIA4EcQkGyOrxhBTWGxNgBcHgHJ5vhHDDWFxdoAcHkEJMBPsRYJAC7PbwNSQUGBJk6cqISEBCUmJmrFihW+HpKHecnzObyGGsdaJAAom98GpJSUFO3atUurV6/WlClTtHDhQn3wwQe+Hpal0FXI4TXUCkISAJTml4sQLly4oI0bN+q1115Tu3bt1K5dO+3bt0/r1q1Tnz59fD08oNYZY3w9BACwFb/cg7R371653W7FxcVZ2+Lj45WRkaHi4mIfjgzwjcBAp2ZPTmFPEgD8wC8DUk5Ojq655hoFBQVZ2yIiIlRQUKDTp0/7bmCAD7lchTLGaF7yfIISAL/nl4fY8vLyPMKRJOu+y+Uqdz8NGkjVeWTC4bj4e2HKIjUOvUruwiJJkjMwoNTtsrZdqb0yz+E1L952OKSg4CAFBgUqwFl/51lyOyAgQK++sERut/viNqdTbrfb+n3pNu/2/LwCPfnMGC2YvUglStrdhUV68pkx1vb50xdY9y+9fSXejy3526nuv0lUHbWxL3+sTcmcy/VY44eLD/785z9r+vTp+sc//mFtO3DggPr27avU1FSFhYX5bnAAAMDn/PIQW1RUlE6dOmX936908bBbw4YNFRoa6sORAQAAO/DLgNS2bVs5nU6lp6db29LS0tS+fXs1aOCXbwkAALiEX6aBkJAQDRgwQFOnTtXOnTu1detWrVixQkOGDPH10AAAgA345Rok6eJC7alTp+ovf/mLGjdurBEjRmjYsGG+HhYAALABvw1IAAAAl+OXh9gAAAB+DAEJAADACwEJAADACwHJJgoKCjRx4kQlJCQoMTFRK1as8PWQ6j2Xy6X+/fsrNTXV2paZmalhw4YpNjZWffv21WeffebxnH/+85/q37+/YmJiNGTIEGVmZnq0r1q1Sl27dlVcXJwmTpyovLy8WplLfZKdna0xY8aoU6dO6tq1q2bNmqWCggJJ1MfXDh8+rBEjRiguLk7dunXTsmXLrDZqYx+PPfaYnn76aev+nj179Ktf/UoxMTG6//77tWvXLo/Hb9myRT179lRMTIxGjhyp7777zmozxmju3Lnq0qWLOnXqpJSUFP/5zlIDW5g2bZq59957za5du8xf/vIXExcXZ/785z/7elj1Vn5+vhk5cqRp1aqV2bZtmzHGmOLiYnPvvfeasWPHmv3795tXX33VxMTEmKysLGOMMVlZWSY2NtYsX77cfP311+b3v/+96d+/vykuLjbGGPPBBx+Y+Ph487//+78mIyPD9O3b1zz33HM+m2NdVFxcbB544AHz6KOPmq+//trs2LHD9OrVyzz//PPUx8eKiopM7969zdixY82hQ4fMp59+ajp27Gj+53/+h9rYyJYtW0yrVq3MU089ZYwx5vvvvzd33nmnef75583+/ftNcnKy+elPf2q+//57Y4wxGRkZpkOHDuZPf/qT+de//mUeeugh89hjj1n9LV++3Nx1111mx44d5vPPPzeJiYlm2bJlPplbbSMg2cD3339v2rdvb/1DbYwxixYtMg899JAPR1V/7du3z/ziF78w9957r0dA+uc//2liY2Ot/3AYY8zQoUPNggULjDHGvPjiix41uXDhgomLi7OeP3jwYOuxxhizY8cO06FDB3PhwoXamFa9sH//ftOqVSuTk5NjbXv33XdNYmIi9fGx7Oxs8/vf/96cO3fO2jZy5EgzZcoUamMTp06dMj/72c/M/fffbwWkjRs3mh49elhhtLi42PTq1cts2rTJGGPM+PHjrccaY8zRo0dN69atzbfffmuMMeauu+6yHmuMMZs3bzbdu3evrSn5FIfYbGDv3r1yu92Ki4uztsXHxysjI8N/dmXWou3bt6tz585av369x/aMjAzddtttatSokbUtPj7euuJ6RkaGEhISrLaQkBC1a9dO6enpKioq0ldffeXRHhsbq8LCQu3du7dmJ1SPREZGatmyZYqIiPDYfv78eerjY02bNtWLL76oxo0byxijtLQ07dixQ506daI2NjF79mz98pe/1C233GJty8jIUHx8vBw/fEurw+FQx44dL1ubZs2aKTo6WhkZGcrOztaxY8d0xx13WO3x8fHKysrSiRMnamdSPkRAsoGcnBxdc801CgoKsrZFRESooKBAp0+f9t3A6qnBgwdr4sSJCgkJ8diek5Ojpk2bemwLDw/X8ePHr9h+9uxZFRQUeLQ7nU6FhYVZz8eVhYaGqmvXrtb94uJirV27Vl26dKE+NtKjRw8NHjxYcXFxuvvuu6mNDXz++ef6v//7Pz3xxBMe269UmxMnTly2PScnR5I82kv+58UfakNAsoG8vDyPcCTJuu9yuXwxJL90uTqU1ODH2vPz8637l3s+Km7OnDnas2eP/vu//5v62MiCBQv06quv6l//+pdmzZpFbXysoKBAU6ZM0eTJk9WwYUOPtivVJj8/v0K18ad/m5y+HgCk4ODgUh+2kvveH3bUnODg4FJ77Fwul1WDy9UpNDRUwcHB1n3vdu89VSifOXPmaPXq1XrhhRfUqlUr6mMj7du3l3TxH+Zx48bp/vvvL3XWGbWpPQsXLtTtt9/usfe1xOXe+yvVJiQkxCMMedfJH2rDHiQbiIqK0qlTp+R2u61tOTk5atiwoUJDQ304Mv8SFRWl3Nxcj225ubnW7uXLtUdGRiosLEzBwcEe7W63W6dPn1ZkZGTND76eSU5O1sqVKzVnzhzdfffdkqiPr+Xm5mrr1q0e22655RYVFhYqMjKS2vjQe++9p61btyouLk5xcXF699139e677youLq5KfzdRUVGSZB1qu/S2P9SGgGQDbdu2ldPptBbNSVJaWprat2+vBg0oUW2JiYnR7t27rd3K0sU6xMTEWO1paWlWW15envbs2aOYmBg1aNBA7du392hPT0+X0+lUmzZtam8S9cDChQv15ptvav78+erXr5+1nfr41pEjRzRq1ChlZ2db23bt2qVrr71W8fHx1MaH/vjHP+rdd9/V5s2btXnzZvXo0UM9evTQ5s2bFRMToy+//FLmh69dNcboiy++uGxtjh07pmPHjikmJkZRUVGKjo72aE9LS1N0dHSpdUv1ko/PosMPnn32WdOvXz+TkZFhPvroI9OxY0fz4Ycf+npY9d6lp/m73W7Tt29f84c//MF8/fXXZsmSJSY2Nta6lktmZqZp3769WbJkiXUtl3vvvdc6fXbLli2mY8eO5qOPPjIZGRmmX79+Jjk52Wdzq4v2799v2rZta1544QVz4sQJjx/q41tut9sMHDjQDB8+3Ozbt898+umn5qc//alZtWoVtbGZp556yjp1/9y5c6ZLly4mOTnZ7Nu3zyQnJ5s777zTuiTDF198Ydq1a2c2bNhgXQfp8ccft/pasmSJSUxMNNu2bTPbtm0ziYmJZsWKFT6ZV20jINnEhQsXzIQJE0xsbKxJTEw0K1eu9PWQ/MKlAckYY7755hvzm9/8xtx+++2mX79+5h//+IfH4z/99FPTu3dv06FDBzN06FDrWiEllixZYn7yk5+Y+Ph4k5SUZPLz82tlHvXFkiVLTKtWrcr8MYb6+Nrx48fNyJEjTceOHc2dd95pXnnlFSvkUBv7uDQgGXPxYpADBgww7du3N4MGDTK7d+/2ePymTZvMXXfdZWJjY83IkSPNd999Z7W53W4zc+ZMk5CQYDp37mzmzJlj1by+cxjzw343AAAASGINEgAAQCkEJAAAAC8EJAAAAC8EJAAAAC8EJAAAAC8EJAAAAC8EJAAAAC8EJAAAAC8EJAA+deTIEbVu3VpHjhzx6That26t1NTUSj33z3/+s06ePFnNI7ro888/14EDB2qkbwCXR0ACgCrIysrSH/7wB+Xl5dVI/8OGDSv1besAah4BCQCqgG9rAuonAhIA2zh79qzGjx+vjh07KjExUcnJycrPz5ckpaamqkePHnr99dfVtWtXxcbGavz48XK5XOXq+/z580pKStJPfvIT3X777erTp4+2bt3q8ZgdO3aod+/eiomJ0e9//3udOXPGaps/f74SExPVoUMHPfzww9q3b58k6ec//7n1++2339bLL7+sJ554Qr/5zW/UqVMnbd++XdnZ2RozZozuuOMO3X777brvvvuUlpZm9X348GGNGDFCcXFx6tatm9asWSNJ6tGjhyRpyJAhevnllyv5rgKoDAISANuYNGmSzp07pzfeeEOLFy/WV199pWnTplntJ06c0Icffqhly5bp5Zdf1l/+8hdt3ry5XH3PmDFDhw4d0ooVK7RlyxYlJCRo0qRJHgFr3bp1mjRpktatW6dDhw5p1qxZkqSPPvpI69ev14svvqgtW7YoIiJCSUlJkqSNGzdav/v27StJ+vjjj9W/f3+tXr1aHTp00Lhx41RUVKQ333xTmzdvVlRUlKZOnSpJKigo0PDhw3XVVVdpw4YNmjx5sl544QV98skneuuttyRJL7/8soYPH16l9xZABRkA8KHMzEzTqlUrc/jwYdOmTRtz9uxZq23v3r3Wtm3btplWrVqZr7/+2mofOXKkeeaZZ8r1Ops2bTL//ve/rfsHDhwwrVq1MkePHjXGGNOqVSuzdu1aqz01NdXcdttt5ty5c2blypXmzjvvNFlZWcYYY06ePGl27NjhMf7MzExjjDELFiwwP/3pT61+iouLzapVq8yxY8esbX/7299MmzZtjDHGbN261cTGxppz585Z7W+99Zb59NNPrXFt27atXHMEUH2cvg5oACBJf/vb31RcXKyf/exnHtuLi4t1+PBh6/6NN95o3W7cuLHcbne5+h8wYIC2bt2qDRs26ODBg9q9e7ckqaioyHpM+/btrdu33Xab3G63vv32W/Xr109r167Vz3/+c8XGxqpnz54aNGjQZV/r+uuvt247HA49+OCDev/99/XFF1/o0KFD2rVrl4qLiyVJhw4dUosWLdS4cWPrOffff3+55gSg5hCQANiC2+1WkyZNtGnTplJtUVFRysjIkCQFBQV5tJlyLpKeMGGCvvzyS/3yl7/Ugw8+qMjISP3nf/6nx2MCAgJK9RsYGKjIyEj9+c9/1j/+8Q998sknWr58uTZs2HDZw3vBwcHW7eLiYg0fPlxnz55V37591aNHDxUWFmrUqFGSJKeT/wwDdsQaJAC20LVrV507d04Oh0M33nijbrzxRuXn5yslJaXcC7Ev5/z589qyZYteeOEFjRkzRr169bIWYF8asL7++mvr9s6dOxUYGKjmzZvr008/1caNG9WtWzc999xzeuedd/TNN9/o66+/lsPh+NHX3r9/v3bs2KFVq1bpt7/9rbp166YTJ05Yr33TTTfp8OHDHpcJmD17tqZPn16lOQOoGgISAFsIDg5W165dNW7cOO3cuVO7d+9WUlKSLly4oNDQ0Cr1HRQUpJCQEP3lL3/RkSNH9Pe//91a/H1p+HrhhRf0+eefKz09XdOnT9evf/1rhYSEqLi4WCkpKfroo4905MgRvf322woJCdFNN92kkJAQSdLevXv1/fffl3rt0NBQNWjQQO+9956ysrL0wQcfWGekuVwuJSYmKiIiQpMnT9aBAwf08ccf680331RiYqIkqVGjRtq3b5/OnTtXpfcAQMUQkADYRkpKipo3b65hw4bpkUceUYsWLTR//vwq9xsUFKQ5c+boww8/VL9+/fT888/rd7/7nSIjI/Wvf/3LetwjjzyiSZMm6ZFHHlFcXJzGjRsn6eLp9mPGjNGsWbN0zz336P3339fixYt19dVX69prr9UvfvEL/eEPf7DOaLvUddddp6lTp+q1115T//79tXTpUj3zzDNyOp3as2ePnE6nFi9erBMnTui+++7TjBkzNGHCBHXr1k2S9PDDDyslJYXT/IFa5jDlPYAPAADgJ9iDBAAA4IXTJwDUeTNmzLAuqliWxx9/XL/97W9rcUQA6joOsQGo87777rsfXcR89dVXKywsrPYGBKDOIyABAAB4YQ0SAACAFwISAACAFwISAACAFwISAACAFwISAACAFwISAACAFwISAACAFwISAACAl/8HLdLj2gnQFo4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.histplot(x='len_abstract', data=df_cleaned)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Filter data to only have records with absract leght between 446.00 and 908.00" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "df = df_cleaned[df_cleaned['len_abstract'].between(446.00, 908.00)].reset_index(drop=True)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idsubmitterauthorstitlecommentsjournal-refdoireport-nocategorieslicenseabstractversionsupdate_dateauthors_parsedcleaned_abstractslen_abstract
00704.0001Pavel NadolskyC. Bal\\'azs, E. L. Berger, P. M. Nadolsky, C.-...Calculation of prompt diphoton production cros...37 pages, 15 figures; published versionPhys.Rev.D76:013009,200710.1103/PhysRevD.76.013009ANL-HEP-PR-07-12hep-phNoneA fully differential calculation in perturba...[{'created': 'Mon, 2 Apr 2007 19:18:42 GMT', '...2008-11-26[[Balázs, C., ], [Berger, E. L., ], [Nadolsky,...fully differential calculation perturbative...695
10704.0002Louis TheranIleana Streinu and Louis TheranSparsity-certifying Graph DecompositionsTo appear in Graphs and CombinatoricsNoneNoneNonemath.CO cs.CGhttp://arxiv.org/licenses/nonexclusive-distrib...We describe a new algorithm, the $(k,\\ell)$-...[{'created': 'Sat, 31 Mar 2007 02:26:18 GMT', ...2008-12-13[[Streinu, Ileana, ], [Theran, Louis, ]]describe new algorithm $ k,\\ell)$-pebble ga...619
20704.0003Hongjun PanHongjun PanThe evolution of the Earth-Moon system based o...23 pages, 3 figuresNoneNoneNonephysics.gen-phNoneThe evolution of Earth-Moon system is descri...[{'created': 'Sun, 1 Apr 2007 20:46:54 GMT', '...2008-01-13[[Pan, Hongjun, ]]evolution earth moon system describe dark m...631
30704.0006Yue Hin PongY. H. Pong and C. K. LawBosonic characters of atomic Cooper pairs acro...6 pages, 4 figures, accepted by PRANone10.1103/PhysRevA.75.043613Nonecond-mat.mes-hallNoneWe study the two-particle wave function of p...[{'created': 'Sat, 31 Mar 2007 04:24:59 GMT', ...2015-05-13[[Pong, Y. H., ], [Law, C. K., ]]study particle wave function pair atom ferm...638
40704.0007Alejandro CorichiAlejandro Corichi, Tatjana Vukasinac and Jose ...Polymer Quantum Mechanics and its Continuum Limit16 pages, no figures. Typos corrected to match...Phys.Rev.D76:044016,200710.1103/PhysRevD.76.044016IGPG-07/03-2gr-qcNoneA rather non-standard quantum representation...[{'created': 'Sat, 31 Mar 2007 04:27:22 GMT', ...2008-11-26[[Corichi, Alejandro, ], [Vukasinac, Tatjana, ...non standard quantum representation canonic...734
...................................................
1135476supr-con/9608007NoneFrancesca Federici, Andrei A. VarlamovThe Fluctuation Induced Pseudogap in the Infra...8 pages, 4 eps figures, Submitted to Phys. Rev. BNone10.1103/PhysRevB.55.6070Nonesupr-con cond-mat.supr-conNoneWe study the effect of fluctuations on the {...[{'created': 'Fri, 23 Aug 1996 09:39:49 GMT', ...2009-10-30[[Federici, Francesca, ], [Varlamov, Andrei A....study effect fluctuation \\bf ac conductivit...703
1135477supr-con/9609001Durga P. ChoudhuryDurga P. Choudhury, Balam A. Willemsen, John S...Nonlinear Response of HTSC Thin Film Microwave...4 pages, LaTeX type, Uses IEEE style files, 60...None10.1109/77.620744Nonesupr-con cond-mat.supr-conNoneThe non-linear microwave surface impedance o...[{'created': 'Sat, 31 Aug 1996 17:34:38 GMT', ...2016-11-18[[Choudhury, Durga P., , Physics Department, N...non linear microwave surface impedance patt...468
1135478supr-con/9609002Durga P. ChoudhuryBalam A. Willemsen, J. S. Derov and S.Sridhar ...Critical State Flux Penetration and Linear Mic...20 pages, LaTeX type, Uses REVTeX style files,...None10.1103/PhysRevB.56.11989Nonesupr-con cond-mat.supr-conNoneThe vortex contribution to the dc field (H) ...[{'created': 'Tue, 3 Sep 1996 14:08:26 GMT', '...2009-10-30[[Willemsen, Balam A., , Physics Department,\\n...vortex contribution dc field h dependent mi...841
1135479supr-con/9609003Hasegawa YasumasaYasumasa Hasegawa (Himeji Institute of Technol...Density of States and NMR Relaxation Rate in A...7 pages, 4 PostScript Figures, LaTeX, to appea...None10.1143/JPSJ.65.3131Nonesupr-con cond-mat.supr-conNoneWe show that the density of states in an ani...[{'created': 'Wed, 18 Sep 1996 07:57:29 GMT', ...2009-10-30[[Hasegawa, Yasumasa, , Himeji Institute of Te...density state anisotropic superconductor \\n...449
1135480supr-con/9609004Masanori IchiokaNaoki Enomoto, Masanori Ichioka and Kazushige ...Ginzburg Landau theory for d-wave pairing and ...12 pages including 8 eps figs, LaTeX with jpsj...J. Phys. Soc. Jpn. 66, 204 (1997).10.1143/JPSJ.66.204Nonesupr-con cond-mat.supr-conNoneThe Ginzburg Landau theory for d_{x^2-y^2}-w...[{'created': 'Wed, 25 Sep 1996 14:17:09 GMT', ...2009-10-30[[Enomoto, Naoki, , Okayama Univ.], [Ichioka, ...ginzburg landau theory d_{x^2 y^2}-wave sup...528
\n", "

1135481 rows × 16 columns

\n", "
" ], "text/plain": [ " id submitter \n", "0 0704.0001 Pavel Nadolsky \\\n", "1 0704.0002 Louis Theran \n", "2 0704.0003 Hongjun Pan \n", "3 0704.0006 Yue Hin Pong \n", "4 0704.0007 Alejandro Corichi \n", "... ... ... \n", "1135476 supr-con/9608007 None \n", "1135477 supr-con/9609001 Durga P. Choudhury \n", "1135478 supr-con/9609002 Durga P. Choudhury \n", "1135479 supr-con/9609003 Hasegawa Yasumasa \n", "1135480 supr-con/9609004 Masanori Ichioka \n", "\n", " authors \n", "0 C. Bal\\'azs, E. L. Berger, P. M. Nadolsky, C.-... \\\n", "1 Ileana Streinu and Louis Theran \n", "2 Hongjun Pan \n", "3 Y. H. Pong and C. K. Law \n", "4 Alejandro Corichi, Tatjana Vukasinac and Jose ... \n", "... ... \n", "1135476 Francesca Federici, Andrei A. Varlamov \n", "1135477 Durga P. Choudhury, Balam A. Willemsen, John S... \n", "1135478 Balam A. Willemsen, J. S. Derov and S.Sridhar ... \n", "1135479 Yasumasa Hasegawa (Himeji Institute of Technol... \n", "1135480 Naoki Enomoto, Masanori Ichioka and Kazushige ... \n", "\n", " title \n", "0 Calculation of prompt diphoton production cros... \\\n", "1 Sparsity-certifying Graph Decompositions \n", "2 The evolution of the Earth-Moon system based o... \n", "3 Bosonic characters of atomic Cooper pairs acro... \n", "4 Polymer Quantum Mechanics and its Continuum Limit \n", "... ... \n", "1135476 The Fluctuation Induced Pseudogap in the Infra... \n", "1135477 Nonlinear Response of HTSC Thin Film Microwave... \n", "1135478 Critical State Flux Penetration and Linear Mic... \n", "1135479 Density of States and NMR Relaxation Rate in A... \n", "1135480 Ginzburg Landau theory for d-wave pairing and ... \n", "\n", " comments \n", "0 37 pages, 15 figures; published version \\\n", "1 To appear in Graphs and Combinatorics \n", "2 23 pages, 3 figures \n", "3 6 pages, 4 figures, accepted by PRA \n", "4 16 pages, no figures. Typos corrected to match... \n", "... ... \n", "1135476 8 pages, 4 eps figures, Submitted to Phys. Rev. B \n", "1135477 4 pages, LaTeX type, Uses IEEE style files, 60... \n", "1135478 20 pages, LaTeX type, Uses REVTeX style files,... \n", "1135479 7 pages, 4 PostScript Figures, LaTeX, to appea... \n", "1135480 12 pages including 8 eps figs, LaTeX with jpsj... \n", "\n", " journal-ref doi \n", "0 Phys.Rev.D76:013009,2007 10.1103/PhysRevD.76.013009 \\\n", "1 None None \n", "2 None None \n", "3 None 10.1103/PhysRevA.75.043613 \n", "4 Phys.Rev.D76:044016,2007 10.1103/PhysRevD.76.044016 \n", "... ... ... \n", "1135476 None 10.1103/PhysRevB.55.6070 \n", "1135477 None 10.1109/77.620744 \n", "1135478 None 10.1103/PhysRevB.56.11989 \n", "1135479 None 10.1143/JPSJ.65.3131 \n", "1135480 J. Phys. Soc. Jpn. 66, 204 (1997). 10.1143/JPSJ.66.204 \n", "\n", " report-no categories \n", "0 ANL-HEP-PR-07-12 hep-ph \\\n", "1 None math.CO cs.CG \n", "2 None physics.gen-ph \n", "3 None cond-mat.mes-hall \n", "4 IGPG-07/03-2 gr-qc \n", "... ... ... \n", "1135476 None supr-con cond-mat.supr-con \n", "1135477 None supr-con cond-mat.supr-con \n", "1135478 None supr-con cond-mat.supr-con \n", "1135479 None supr-con cond-mat.supr-con \n", "1135480 None supr-con cond-mat.supr-con \n", "\n", " license \n", "0 None \\\n", "1 http://arxiv.org/licenses/nonexclusive-distrib... \n", "2 None \n", "3 None \n", "4 None \n", "... ... \n", "1135476 None \n", "1135477 None \n", "1135478 None \n", "1135479 None \n", "1135480 None \n", "\n", " abstract \n", "0 A fully differential calculation in perturba... \\\n", "1 We describe a new algorithm, the $(k,\\ell)$-... \n", "2 The evolution of Earth-Moon system is descri... \n", "3 We study the two-particle wave function of p... \n", "4 A rather non-standard quantum representation... \n", "... ... \n", "1135476 We study the effect of fluctuations on the {... \n", "1135477 The non-linear microwave surface impedance o... \n", "1135478 The vortex contribution to the dc field (H) ... \n", "1135479 We show that the density of states in an ani... \n", "1135480 The Ginzburg Landau theory for d_{x^2-y^2}-w... \n", "\n", " versions update_date \n", "0 [{'created': 'Mon, 2 Apr 2007 19:18:42 GMT', '... 2008-11-26 \\\n", "1 [{'created': 'Sat, 31 Mar 2007 02:26:18 GMT', ... 2008-12-13 \n", "2 [{'created': 'Sun, 1 Apr 2007 20:46:54 GMT', '... 2008-01-13 \n", "3 [{'created': 'Sat, 31 Mar 2007 04:24:59 GMT', ... 2015-05-13 \n", "4 [{'created': 'Sat, 31 Mar 2007 04:27:22 GMT', ... 2008-11-26 \n", "... ... ... \n", "1135476 [{'created': 'Fri, 23 Aug 1996 09:39:49 GMT', ... 2009-10-30 \n", "1135477 [{'created': 'Sat, 31 Aug 1996 17:34:38 GMT', ... 2016-11-18 \n", "1135478 [{'created': 'Tue, 3 Sep 1996 14:08:26 GMT', '... 2009-10-30 \n", "1135479 [{'created': 'Wed, 18 Sep 1996 07:57:29 GMT', ... 2009-10-30 \n", "1135480 [{'created': 'Wed, 25 Sep 1996 14:17:09 GMT', ... 2009-10-30 \n", "\n", " authors_parsed \n", "0 [[Balázs, C., ], [Berger, E. L., ], [Nadolsky,... \\\n", "1 [[Streinu, Ileana, ], [Theran, Louis, ]] \n", "2 [[Pan, Hongjun, ]] \n", "3 [[Pong, Y. H., ], [Law, C. K., ]] \n", "4 [[Corichi, Alejandro, ], [Vukasinac, Tatjana, ... \n", "... ... \n", "1135476 [[Federici, Francesca, ], [Varlamov, Andrei A.... \n", "1135477 [[Choudhury, Durga P., , Physics Department, N... \n", "1135478 [[Willemsen, Balam A., , Physics Department,\\n... \n", "1135479 [[Hasegawa, Yasumasa, , Himeji Institute of Te... \n", "1135480 [[Enomoto, Naoki, , Okayama Univ.], [Ichioka, ... \n", "\n", " cleaned_abstracts len_abstract \n", "0 fully differential calculation perturbative... 695 \n", "1 describe new algorithm $ k,\\ell)$-pebble ga... 619 \n", "2 evolution earth moon system describe dark m... 631 \n", "3 study particle wave function pair atom ferm... 638 \n", "4 non standard quantum representation canonic... 734 \n", "... ... ... \n", "1135476 study effect fluctuation \\bf ac conductivit... 703 \n", "1135477 non linear microwave surface impedance patt... 468 \n", "1135478 vortex contribution dc field h dependent mi... 841 \n", "1135479 density state anisotropic superconductor \\n... 449 \n", "1135480 ginzburg landau theory d_{x^2 y^2}-wave sup... 528 \n", "\n", "[1135481 rows x 16 columns]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGxCAYAAACZa0njAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFFklEQVR4nO3de3gU1eHG8XeTJZsgIBJCJISCteUeNiEh0gIVKFJubSkgFlsUoYVWkNoK9hexCAKiAdRyq6JyEyt3baXWC1ZrWxXbQIJIUW5iCAESNICSC5ud3x+YKTsksAmb3dnk+3mePGbnzOWcOYl5mTlzxmEYhiEAAACYIkJdAQAAALshIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWDhDXYFwdvLkGfGilktzOKTY2MacqxCjH0KPPrAH+sEeQtUPFcf1BwHpChiG+AXzE+fKHuiH0KMP7IF+sAc794MtbrGVlZVp6NCh2r59+0VlZ86cUe/evbVlyxaf5Vu3blX//v3ldrs1adIkffbZZ2aZYRhasGCBevToofT0dGVmZsrr9Zrln3/+ue666y6lpKSoX79++tOf/lR7jQMAAGEn5AGptLRUv/nNb7Rv375Ky+fPn68TJ074LNu1a5emT5+uyZMna/369Tp9+rQyMjLM8pUrV2rr1q1asmSJFi1apJdeekkrV640yzMyMnTmzBmtX79ev/zlL3X//fdr165dtdNAAAAQdkJ6i23//v265557ZFRxfe0///mP3nvvPcXFxfksX7t2rQYNGqRhw4ZJkjIzM9W3b1/l5uaqdevWWrNmjaZMmaK0tDRJ0tSpU/X73/9e48eP16effqo333xTb7zxhhITE9WuXTtlZ2frj3/8o7p27Vqr7QUAAOEhpFeQ3n//fd1www1av379RWVlZWX63e9+pxkzZigqKsqnLCcnxww/ktSyZUslJCQoJydHx48fV35+vrp3726Wp6amKi8vTydOnFBOTo5atmypxMREn/KdO3fWQgsBAEA4CukVpFtvvbXKsieeeEKdOnVSr169Lio7ceKEWrRo4bMsNjZWx44dU0FBgST5lDdv3lySzPLKtj1+/HiN2wEAAOoWWz7Ftn//fq1bt05//vOfKy0vKSm56KpSVFSUysrKVFJSYn6+sEw6f1WquLi4ym2ry+Go9ib1TsU54lyFFv0QevSBPdAP9hCqfqjO8WwXkAzD0P33368pU6aYV36sXC7XRYGmrKxMMTExPmHI5XKZ30tSTExMldtGR0dXu67+zqUAzpVd0A+hRx/YA/1gD3buB9sFpKNHj2rnzp366KOP9Mgjj0iSiouL9cADD+jll1/W008/rfj4eBUWFvpsV1hYqLi4OMXHx0uSCgoKzHFGFbfdKsqr2ra6mGjs8piUzR7oh9CjD+yBfrAHJoqsgfj4eL322ms+y8aMGaMxY8boBz/4gSTJ7XYrKytLw4cPlyTl5+crPz9fbrdb8fHxSkhIUFZWlhmQsrKylJCQoBYtWig5OVl5eXk6duyYrr32WrM8OTm52nW18wRXdsO5sgf6IfToA3ugH+zBzv1gu4DkdDrVpk2bi5bFxsaaV4dGjx6tMWPGKDk5WUlJSZo7d6769Omj1q1bm+ULFiwwA9DChQs1btw4SVLr1q3Vq1cvTZs2TdOnT9cHH3ygrVu3au3atUFsJQAAsDPbBSR/pKSk6MEHH9SiRYt06tQp9ezZU7NnzzbLx48fr5MnT2ry5MmKjIzUyJEjNXbsWLM8MzNT06dP16hRoxQXF6eHHnqIOZAAAIDJYVQ1SyMuq7CQe9iX43BIzZs35lyFGP0QevSBPdAP9hCqfqg4rj9C/qoRAAAAuyEgAQAAWITlGCSEntPpm609Hm+IagIAQOARkCCpeoHH6YzQxrWblZebL0lq1bqlbv7piGqHJEIWAMCuCEioUeDJy83Xof2Hg3pMAACChYAESVceeEJ1TK5CAQBqAwEJYYurUACA2kJAQlgLxZUvAEDdR0BCvRKIW3LV3Yd1/ZoeFwAQPAQk1BuBuCVX3X1Y16/pcQEAwUVAqgMYqOy/QNySq+4+uA0IAOGHgGRDoZiTCAAA/A8ByWZCMScRAADwRUCyIQIPrAJ1G9XpjDDfnM1VRgCoGgEJsLlADS5fsWytDn+SV+N9AEB9QkACwkBABpcf4cokAPjr4glaAAAA6jmuIAGoNTUZO8W0FQDsgIAEoFbUZOwU01YAsAsCEoBKBeIVKTUZO8VTnADsgIAE4CK8IgVAfUdAAlApruQAqM94ig0AAMCCK0gA6pRAjJ0CAAISgDqDsVMAAoWABKBOYewUgEBgDBIAAIAFAQkAAMCCgAQAAGDBGCQAsOB9cAAISABwAd4HB0AiIAHARWryJBxXnYC6hYAEAFeIq05A3UNAAoAAYP4loG7hKTYAAAALAhIAAIAFt9gAwAYY5A3YCwEJAEKMQd6A/RCQAMAGGOQN2AtjkAAAACxsEZDKyso0dOhQbd++3VyWnZ2tH//4x0pJSdH3vvc9bdy40Webd955R0OHDpXb7dZtt92m3Nxcn/JVq1apd+/eSklJ0X333afi4mKzrLS0VPfdd5/S0tLUq1cvrVixonYbCAC1wOmM8PkCEDgh/40qLS3Vb37zG+3bt89cVlBQoJ///OdKT0/XCy+8oClTpmj27Nl66623JElHjx7VpEmTNHz4cG3atEnNmjXTnXfeKcMwJEmvvvqqlixZogcffFCrV69WTk6O5s+fb+4/MzNTu3fv1urVq/XAAw9oyZIleuWVV4LabgC4EhXjlh6ft0SPz1uijWs3E5KAAArpGKT9+/frnnvuMYNNhW3btql58+b6zW9+I0lq27attm/frpdeekl9+vTRxo0b1aVLF40bN06SNG/ePPXs2VPvv/++brjhBq1Zs0a33367+vbtK0maNWuWxo8fr2nTpskwDG3cuFFPPfWUOnfurM6dO2vfvn167rnnNHDgwOCeAAC4AoxbAmpPSP+5URFo1q9f77O8d+/emjdv3kXrf/HFF5KknJwcpaWlmctjYmLUuXNnZWdnq7y8XB988IFPeXJyss6dO6e9e/dq79698ng8SklJMctTU1OVk5Mjr5cnRgDUH9ZbdDW5AsVtPtRVIb2CdOutt1a6PDExUYmJiebnkydP6i9/+YvuuusuSedvwbVo0cJnm9jYWB07dkynT59WaWmpT7nT6VTTpk117NgxRURE6JprrlFUVJRZ3rx5c5WWlqqoqEjNmjXzu/4Oh9+rXtE+HY6qj1Xd9YN9zIpl1jK717s2j1nd4wai3hduV3HB1o71vtK22rneVf0u1OYxL8XpjNCGZ/83tYB0fnqBUWP8n17Auo/qbh8Kl+oHBE+o+qE6x7P9Y/4lJSW666671Lx5c91yyy2SpOLiYp+AI0lRUVEqKytTSUmJ+bmycsMwKi2Tzg8Wr47Y2MbVWt9fTmeEGjSINL9v2vSqgK4fimNWdq7Cod6BPmZNjxuIep/f1v71vtK22r3eVf1/IxTn6nj+cR05fMRnf1eyjyv52Qy22vr/N6rHzv1g64D05Zdf6s4779Qnn3yiP/7xj4qJiZEkuVyui8JMWVmZmjRpIpfLZX62lsfExKi8vLzSMkmKjo6uVv1Onjwjy/CpK+Z0Rsjj8ercuXJJ52fTLSr6ssp/kVV3/WAf0+E4/wtgPVd2r3dtHbMmxw1Uvc9vWy7DsG+9r7Stdq53Vb8LtXnM6rQzEPuoyc9msF2qHxA8oeqHiuP6w7YB6YsvvtDPfvYzffrpp1q9erXatm1rlsXHx6uwsNBn/cLCQnXs2FFNmzaVy+VSYWGhrr/+ekmSx+NRUVGR4uLiZBiGPv/8c3k8Hjmd55tfUFCg6OhoNWnSpFp1NAwFvGMr29+ljlPd9UN1TGt5uNS7No5Z3eMGot6V7cuO9b7StoZDvStbXp/OlV2ESz3rOjv3gy1H1Hm9Xk2ePFlHjhzRs88+q29+85s+5W63W1lZWebn4uJi7dmzR263WxEREUpKSvIpz87OltPpVIcOHdSxY0c5nU5lZ2eb5VlZWUpKSlJEhC1PBwAACDJbJoJNmzZp+/btmjNnjpo0aaKCggIVFBSoqKhIkjRixAjt2LFDy5cv1759+5SRkaHExETdcMMNks4P/n7mmWe0bds27dq1SzNnztSoUaMUExOjmJgYDRs2TDNnztSuXbu0bds2rVixQrfddlsIWwwAAOzElrfYXn31VXm9Xk2cONFneXp6up599lklJiZq8eLFeuihh7R06VKlpKRo6dKlcnw1PH3IkCHKy8vTjBkzVFZWpgEDBmjatGnmfjIyMjRz5kzdfvvtatSoke666y4NGDAgqG0EAAD2ZZuA9NFHH5nfP/PMM5dd/8Ybb9SNN95YZfmECRM0YcKESstiYmL0yCOP6JFHHql+RQEAQJ1ny1tsAAAAoURAAgAAsLDNLTYAQP1gfSVJdedNquyVJnaeewnhiYAEAAgapzNCG9f6vp7k5p9W7/UmF25fk30A/iAgAQCCKi83X4f2Hw7Z9oA/GIMEAABgQUACAACwICABAABYEJAAAAAsGKQNAKjzKqYG+OqNVMBlEZAAAHWadWqANm1bafitP9K5c0wLgKoRkAAAdd6FUwNUNtEkYMVPCQAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWPAUG65YZGSEIiMvztq8WRsAEK4ISLhIZYHnUmEnvmULrV+zUUc+zTeXtWrdUjf/dITKy4MXkqpbbwAAqkJAqgcqm/OjOoGnIuxcapu8T/83x4g/9ajsitOVqkm9K2M9X4QsAKh/CEh1nHUGWSlwgae69djw7P/qkZzaRRfO+B+oqz9XWm/r+appyAIAhDcCUj1w4Qyy0sVhpDau5lyuHgmJ1/qUBerqT6DrCQConwhI9ZA1jFiv5gRCRQireDGkPyEs0FetAACoKQKSzdXWwOMLw4j1ak4gXBjCnM4IdXF3CngIAwCgthCQbK66t55CdfusMhUhrEGDSLW4tkXQj3+5c1FZ+LzcOv7s43IBlqftgPDEAxz1CwEpDFTn1lMwbp8FQ1VzK1nXuZTLnYvKpie43DqXK2/dppVGjfnf9AaV1fFy21S3nQBqHw9w1D8EpDqotm+fBUNV4aWw4GS1wt/lzoU1fF5uHX/K/Qmol9umuu0EUPt4gKN+ISCFGTvdQqttlYWX/CPHbB/+ahJQrdvUpJ1c/gfsrbpz0iG0CEhhJhS30OpTKAtX1sv//tzqAxA8NZ2TDqFDQApDwb6FVlfGNdV11nmmrH0GILS4RRdeCEjwS10Y11Tf0GcAUHMEJCDM+DM9QU32wfQEAPA/BCQgzPgzPUF19+HPWAg7vQ4GqC94+CJ0CEhAGPJneoLq7MPfgfhX8joYrkAB1cPcS6FFQAIQsIH4F/5r1xqGAnUFqrJHpas6JhDuGNgdOgQkAJKufFC39V+7lYWsS121qlhW3WMwqSaA2kBAAlAjld2Ws041cCk1HUtlPUY4TB4KIPwQkADUSCBuywViLBUA1AYCEoAaY64lAHWVLUY0lpWVaejQodq+fbu5LDc3V2PHjlVycrIGDx6sf/7znz7bvPPOOxo6dKjcbrduu+025ebm+pSvWrVKvXv3VkpKiu677z4VFxebZaWlpbrvvvuUlpamXr16acWKFbXbQAA1UnEbz+k8/1WTQdjWfVxqkDcAVAj5FaTS0lLdc8892rdvn7nMMAxNmjRJ7dq10+bNm7Vt2zZNnjxZL7/8shISEnT06FFNmjRJd911l3r37q2lS5fqzjvv1J///Gc5HA69+uqrWrJkiebPn6/Y2FhlZGRo/vz5mjFjhiQpMzNTu3fv1urVq3X06FH99re/VUJCggYOHBiq0wCgEoG4jefP03OXevqO6QmA+imkAWn//v265557ZBiGz/L33ntPubm5WrdunRo2bKjrr79e7777rjZv3qy77rpLGzduVJcuXTRu3DhJ0rx589SzZ0+9//77uuGGG7RmzRrdfvvt6tu3ryRp1qxZGj9+vKZNmybDMLRx40Y99dRT6ty5szp37qx9+/bpueeeIyABNhSI23iXm/Np3eqNVT59V5PpCSoLVRUvDgYQHkIakCoCza9//WslJyeby3NyctSpUyc1bNjQXJaamqrs7GyzPC0tzSyLiYlR586dlZ2drbS0NH3wwQeaPHmyWZ6cnKxz585p7969MgxDHo9HKSkpPvt+4okn5PV6FRHB5XegLqvsqtTRyzx9V90JMisLVaPGjAhA7YHax+zd54U0IN16662VLi8oKFCLFi18lsXGxurYsWOXLT99+rRKS0t9yp1Op5o2bapjx44pIiJC11xzjaKioszy5s2bq7S0VEVFRWrWrFmgmgfApq7kqpS/8zddyazjQCBVJ/Awe/f/hHwMUmWKi4t9AowkRUVFqays7LLlJSUl5ufKyg3DqLRMkrl/fzlqYUa62thnKFW0p441K+xUnH+HQ7Lc0UY1Xem78Cr7Ha9q2aX+f1CTbS63fSD2Ycd6X7i8qu9rctxg1rsmx5TOB54Nz/oGnlFjqg48DsfFs3dX95j+MP82BPmPQ7XOXe1Vo+ZcLpeKiop8lpWVlSk6Otost4aZsrIyNWnSRC6Xy/xsLY+JiVF5eXmlZZLM/fsrNrZxtdb3l9MZoQYNIiV99a/VAH6ujX1e6hhO5/llEWFW73A6hj/rRHx1haOiP+xQb7ucm5p8zs87piOHj5jHaN0m4ZLbRLmcatr0KklV/3/jwt97pzPCXP9SarJNVdsHYh92rrd1m+oe07qPUNS7JseUpOP5x82f12Ad01+19Xc0EGwZkOLj47V//36fZYWFheZts/j4eBUWFl5U3rFjRzVt2lQul0uFhYW6/vrrJUkej0dFRUWKi4uTYRj6/PPP5fF45HSeb35BQYGio6PVpEmTatXz5MkzAf/XuNMZIY/Hq3PnyiWdH9hZHsDPtbHPSx3D4ymX0xkpb5jVO5yO4c863q8GCHs85TIMe9TbLucmGMdoHtdcTy1Zo2NHj6vc41WC5V/x1t97j8eroqIvL3srpLrbXGr7QOzDrvW+cJuKKwjVOaYd6l2TY9ZkH4E4pj8cjvPhqDb+jvpzXH/YckSy2+3Whx9+aN4uk6SsrCy53W6zPCsryywrLi7Wnj175Ha7FRERoaSkJJ/y7OxsOZ1OdejQQR07dpTT6TQHfFfsOykpqdoDtA2jdr7qkor21LFmhZ2K81/Xfr7CSd6n+frkwKc6uP+w8nLzL/l7HxkZoYiICHO8U8XX5f5fEYj/11zpPmprmyut94XrBbOtgap3TY9Zk30E4pj+1qu29l3dfqiMLa8gpaenq2XLlsrIyNCdd96pN998U7t27dK8efMkSSNGjNAzzzyj5cuXq2/fvlq6dKkSExN1ww03SDo/+HvGjBlq166dWrRooZkzZ2rUqFGKiYmRJA0bNkwzZ87UQw89pBMnTmjFihXmvgEg1Cob53S5wbLM1wQEli0DUmRkpJYtW6bp06dr+PDhatOmjZYuXaqEhARJUmJiohYvXqyHHnpIS5cuVUpKipYuXSrHV9dOhwwZory8PM2YMUNlZWUaMGCApk2bZu4/IyNDM2fO1O23365GjRrprrvu0oABA0LSVgD1T2VzMVld6dQCrdu00qgxI3zmXyIwAf6zTUD66KOPfD63adNGa9eurXL9G2+8UTfeeGOV5RMmTNCECRMqLYuJidEjjzyiRx55pGaVBYArEIgZwitjnb6guhNcAvgf2wQkAKhPgvGiX+ZiAmqOgAQAYcCf23K1uT1Q3xCQACAMXOltudq6reePS70MGLArAhIAhIkrvS0XjNt6VtZXVwQzmAFXgoAEAJDk31QBNbkalHeZlwEDdkRAAgBIuvxUAZGREVq3eiNXg3BZ1XlBrl0RkAAApktNFZCc2kVHL3E1qLIrUIw5qn+st1X9mWLCjoGKgAQAqFJ1xi1VNgM4V5nqpwtvq15OTQJVMBCQAAABY517qSZjjux4NQG1qzqBKlgISAAA27Dr1QTUPwQkAICt2PFqAuofRs8BAABYEJAAAAAsuMUGAAiZy70jzp93yPkzwSVQXQQkAEDIXO4dcf68Q866DgO7EQgEJABASF1uriV/5mKyTi8AXCkCEgCg3mPuJVgRkAAA9RpzL6EyBCQAQL134dxLvFMOEgEJAFDHXO7Jt4ivyg2j8nLeKQeJgAQAqGMu+2TctS20bvWln4wLxDvlEN4ISACAOicQT8ahfuOmKgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWPAUGwAA1VTZZJLMvF23EJAAAKgm61xLlb2e5ML3uzETd/ghIAEAUAMXzqVU2ezd61ZvNN/vxkzc4YeABADAFaps9u6juUxGGc4ISAAABACzc9ct3BQFAACwICABAABYEJAAAAAsGIMEAEAIMJeSvRGQAAAIAeuTb63btNKoMSNUXn4+JDF3UmgRkAAACBHrk2/WqQKYOyl0CEgAANhEdacKuHC2bolbdIFEQAIAIAw5nRHauHazOVt3Za87Qc3Z+gZnfn6+Jk6cqG7duqlfv35atWqVWbZnzx7dfPPNcrvdGjFihHbv3u2z7datW9W/f3+53W5NmjRJn332mVlmGIYWLFigHj16KD09XZmZmfJ6+YECANhXxaBup/P8V2RkhPK+mq370P7DOnb0uE95xTqoGVtfQbr77ruVkJCgLVu2aP/+/Zo6dapatWqlnj17asKECfr+97+vhx9+WM8//7wmTpyo119/XQ0bNtSuXbs0ffp0zZo1Sx06dNDcuXOVkZGhJ598UpK0cuVKbd26VUuWLJHH49G0adMUGxur8ePHh7jFAABUrrLXmTguUV7ZOvCfbQPSqVOnlJ2drdmzZ6tt27Zq27atevfurXfffVenTp2Sy+XSvffeK4fDoenTp+vtt9/WK6+8ouHDh2vt2rUaNGiQhg0bJknKzMxU3759lZubq9atW2vNmjWaMmWK0tLSJElTp07V73//ewISAMDWLjdG6cLyqtaBf2x77S06OloxMTHasmWLzp07p4MHD2rHjh3q2LGjcnJylJqaKofjfC52OBzq1q2bsrOzJUk5OTlm+JGkli1bKiEhQTk5OTp+/Ljy8/PVvXt3szw1NVV5eXk6ceJEUNsIAADsybYByeVyacaMGVq/fr3cbrcGDRqk73znO7r55ptVUFCgFi1a+KwfGxurY8eOSZJOnDhRZXlBQYEk+ZQ3b95ckszt/eVw1M5XXVLRnjrWrLBTcf7r2s9XOKIPQqu+n/+KMUoNGlT+ZX0qTgrM37Gq1qnO+sH+G2vbW2ySdODAAfXt21d33HGH9u3bp9mzZ+tb3/qWiouLFRUV5bNuVFSUysrKJEklJSVVlpeUlJifLyyTZG7vr9jYxtVukz/O//BGSvpqUF4AP9fGPi91DKfz/LKIMKt3OB3Dn3UivhqoWdEfdqi3Xc5NMI9R0Qfh3o5wr7ekkLcjVOcmIfFabXx2s/KOnB+n5O7WRYUnTvp8vvBvkNMZoaZNr1J1+buPir+jgThmoNk2IL377rvatGmT/v73vys6OlpJSUk6fvy4/vCHP6h169YXhZmysjJFR0dLOn/1qbLymJgYnzDkcrnM7yUpJiamWnU8efKMDKNGzauS0xkhj8erc+fKJUnl5V6VB/BzbezzUsfweMrldEbKG2b1Dqdj+LOO96uZeT2echmGPeptl3MTzGNU9EG4tyOc611xBSHU7QjluTly5JgOfjVOqcW1LZRv+Xzh+oYhnTlTbM7uLV1+riXr3zGPx6uioi99tnM4zoejkyfPKDLy8usHSsVx/WHbgLR79261adPGDD2S1KlTJz3xxBNKS0tTYWGhz/qFhYXmbbP4+PhKy+Pi4hQfHy9JKigoUGJiovm9JMXFxVWrjoahgAekQO8v1CraU8eaFXYqzn9d+/kKR/RBaHH+qye+ZQutW/2/J+P8mWupsnNc1d/L6i4PJtuOQWrRooUOHz7scyXo4MGDSkxMlNvt1s6dO2V8dfYMw9COHTvkdrslSW63W1lZWeZ2+fn5ys/Pl9vtVnx8vBISEnzKs7KylJCQcNG4JQAA6ruKJ+OqmmupsnFLdUHAryB99tlnatas2RXvp1+/fpo/f77uv/9+/fKXv9ShQ4f0xBNP6Ne//rUGDhyohQsXau7cufrxj3+sdevWqbi4WIMGDZIkjR49WmPGjFFycrKSkpI0d+5c9enTR61btzbLFyxYoGuvPf/448KFCzVu3LgrrjMAAHVZZXMt1dUZvGsUkDp27Kh//etfFwWhvLw8DR06VDt37rziijVu3FirVq3S3LlzNXLkSDVr1ky//OUvdcstt8jhcOjJJ5/UAw88oA0bNqh9+/Zavny5GjZsKElKSUnRgw8+qEWLFunUqVPq2bOnZs+ebe57/PjxOnnypCZPnqzIyEiNHDlSY8eOveI6AwBQ11nnWqqr/A5IL774orZs2SLp/C2tSZMmqUGDBj7rnDhxotrjeC7lG9/4hlauXFlpWdeuXfXCCy9Uue3w4cM1fPjwSssiIyOVkZGhjIyMgNQTAADULX4HpJtuuklHjhyRJL3//vtKTk7WVVf5PobXsGFD3XTTTYGtIQAAQJD5HZCuuuoqTZ48WZLUqlUrDR482HxMHgAA1E8VL9G98HNdUKMxSD/60Y90+PBh7d69W+fOnbuovOIdaAAAoG673Et0rQFKks+8SnZVo4D09NNPa8GCBbr66qsvus3mcDgISAAA1COXeomuNUC1at1So8aMCHodq6tGAWnFihWaNm2axo8fH+j6AACAOiYcn3yrUUAqLS3VgAEDAl0XAABQx114y83pjFBEhD3HLNUoIH3/+9/XH//4R917771y1PdXIwMAAL9VvL7k2NHj8ni8F41ZsosaBaQvvvhCmzZt0tatW5WYmHjRfEhr1qwJSOUAAEDdk/dpvnIPH9G5c+UXjVmyixoFpLZt2+oXv/hFoOsCAABgCzUKSBXzIQEAANRFNQpIl3tFx7x582pUGQAAADsIyNBxj8ejQ4cO6eWXX77oBbYAAADhpkZXkKq6QvT000/r448/vqIKAQAAhFpAJx8YOHCgXn/99UDuEgAAIOgCFpDOnj2rDRs26JprrgnULgEAAEKiRrfYOnToUOkEkS6XS3PmzLniSgEAAIRSjQKSdSJIh8OhBg0a6Bvf+IYaNWoUkIoBAACESo0CUnp6uiTpk08+0YEDB+T1enXdddcRjgAAQJ1Qo4B0+vRpZWRk6I033tDVV1+t8vJyffnll+revbuWLl2qxo0bB7qeAAAAQVOjQdpz5szRsWPH9PLLL2v79u36z3/+o5deeklnz55lkkgAABD2ahSQ/va3v2nmzJn6+te/bi77xje+oRkzZuiNN94IWOUAAABCoUYByeVyKSLi4k0dDofKy8uvuFIAAAChVKOA1K9fP82aNUuffvqpueyTTz7RnDlzdOONNwascgAAAKFQo0Ha06ZN06RJk/S9731PTZo0kSSdOnVK3/nOd/S73/0uoBUEAAAItmoHpMOHDyshIUHPPvusPvroIx04cEAul0tt27bV9ddfXxt1BAAACCq/b7EZhqE5c+Zo0KBB2rlzpySpffv2Gjx4sDZv3qyhQ4fq4YcflmEYtVZZAACAYPA7IK1Zs0Yvv/yyli5dak4UWWHZsmVaunSpXnjhBT3//PMBryQAAEAw+R2QNmzYoN/97nfq27dvpeX9+vXT1KlTCUgAACDs+R2Q8vLy1LVr10uu06NHD+Xm5l5xpQAAAELJ74AUGxurvLy8S65z7NgxNW3a9ErrBAAAEFJ+B6SbbrpJixcv1rlz5yot93g8WrJkiXr16hWwygEAAISC34/533nnnRo5cqSGDx+uMWPGqEuXLmrcuLFOnTqlDz/8UGvXrtWXX36pzMzM2qwvAABArfM7IDVp0kQbNmzQggUL9PDDD6u4uFjS+cf/GzdurMGDB+uuu+5S8+bNa62yAAAAwVCtiSKbNm2qOXPmaMaMGcrNzdXp06fVtGlTfe1rX1NkZGRt1REAACCoavSqkaioKGbNBgAAdVaNXlYLAABQlxGQAAAALAhIAAAAFgQkAAAAC1sHpLKyMs2aNUvdu3fXt7/9bT366KMyDEOStGfPHt18881yu90aMWKEdu/e7bPt1q1b1b9/f7ndbk2aNEmfffaZWWYYhhYsWKAePXooPT1dmZmZ8nq9QW0bAACwL1sHpDlz5uidd97RM888o4ULF2rDhg1av369zp49qwkTJigtLU1btmxRSkqKJk6cqLNnz0qSdu3apenTp2vy5Mlav369Tp8+rYyMDHO/K1eu1NatW7VkyRItWrRIL730klauXBmqZgIAAJup0WP+wVBUVKTNmzdr5cqV5ktyx40bp5ycHDmdTrlcLt17771yOByaPn263n77bb3yyisaPny41q5dq0GDBmnYsGGSpMzMTPXt21e5ublq3bq11qxZoylTpigtLU2SNHXqVP3+97/X+PHjQ9VcAABgI7a9gpSVlaVGjRopPT3dXDZhwgTNmzdPOTk5Sk1NlcPhkCQ5HA5169ZN2dnZkqScnBwz/EhSy5YtlZCQoJycHB0/flz5+fnq3r27WZ6amqq8vDydOHEiOI0DAAC2ZtuAlJubq1atWunFF1/UwIED9d3vfldLly6V1+tVQUGBWrRo4bN+bGysjh07Jkk6ceJEleUFBQWS5FNe8XqUiu0BAED9ZttbbGfPntXhw4e1bt06zZs3TwUFBZoxY4ZiYmJUXFysqKgon/WjoqJUVlYmSSopKamyvKSkxPx8YZkkc3t/fXUBK6BqY5+hVNGeOtassFNx/h0O6avnHBAide13PNxw/u2lqv5wOEL/N9a2AcnpdOqLL77QwoUL1apVK0nS0aNH9fzzz6tNmzYXhZmysjJFR0dLklwuV6XlMTExPmHI5XKZ30tSTExMteoYG9u4+g3zg9MZoQYNzr/bLjIyQpEB/Fwb+7zUMZzO88siwqze4XQMf9aJiDx/sbiiP+xQb7ucm2Aeo6IPwr0d4V5vSSFvh13PTTCPIVX+++B0Rqhp06sUarYNSHFxcXK5XGY4kqTrrrtO+fn5Sk9PV2Fhoc/6hYWF5m2z+Pj4Ssvj4uIUHx8vSSooKFBiYqL5fcUxq+PkyTMB/9e40xkhj8erc+fKJUnl5V6VB/BzbezzUsfweMrldEbKG2b1Dqdj+LOOt/z8NBYeT7kMwx71tsu5CeYxKvog3NsRzvWuuIIQ6nbY8dwE+xhS5b8PHo9XRUVfyuMJ/PQ7Dof/FzdsOwbJ7XartLRUhw4dMpcdPHhQrVq1ktvt1s6dO805kQzD0I4dO+R2u81ts7KyzO3y8/OVn58vt9ut+Ph4JSQk+JRnZWUpISHhonFLl2MYtfNVl1S0p441K+xUnP+69vMVjuiD0OL820tV/VFbf1+r0/+2DUhf//rX1adPH2VkZGjv3r36xz/+oeXLl2v06NEaOHCgTp8+rblz52r//v2aO3euiouLNWjQIEnS6NGj9ac//UkbN27U3r17de+996pPnz5q3bq1Wb5gwQJt375d27dv18KFC3XbbbeFsrkAAMBGbHuLTZIWLFig2bNna/To0YqJidFPfvITjRkzRg6HQ08++aQeeOABbdiwQe3bt9fy5cvVsGFDSVJKSooefPBBLVq0SKdOnVLPnj01e/Zsc7/jx4/XyZMnNXnyZEVGRmrkyJEaO3ZsiFoJAADsxtYBqXHjxsrMzKy0rGvXrnrhhReq3Hb48OEaPnx4pWWRkZHKyMjwmV0bAACggm1vsQEAAIQKAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEAABgQUACAACwICABAABYEJAAAAAsCEgAAAAWBCQAAAALAhIAAIAFAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAAi7AJSBMmTND//d//mZ/37Nmjm2++WW63WyNGjNDu3bt91t+6dav69+8vt9utSZMm6bPPPjPLDMPQggUL1KNHD6WnpyszM1NerzdobQEAAPYWFgHpL3/5i/7+97+bn8+ePasJEyYoLS1NW7ZsUUpKiiZOnKizZ89Kknbt2qXp06dr8uTJWr9+vU6fPq2MjAxz+5UrV2rr1q1asmSJFi1apJdeekkrV64MersAAIA92T4gFRUVKTMzU0lJSeayl19+WS6XS/fee6+uv/56TZ8+XVdddZVeeeUVSdLatWs1aNAgDRs2TB06dFBmZqb+/ve/Kzc3V5K0Zs0aTZkyRWlpaerRo4emTp2q5557LiTtAwAA9mP7gPTII4/ohz/8ob7xjW+Yy3JycpSamiqHwyFJcjgc6tatm7Kzs83ytLQ0c/2WLVsqISFBOTk5On78uPLz89W9e3ezPDU1VXl5eTpx4kRwGgUAAGzN1gHp3Xff1X/+8x/deeedPssLCgrUokULn2WxsbE6duyYJOnEiRNVlhcUFEiST3nz5s0lydzeXw5H7XzVJRXtqWPNCjsV57+u/XyFI/ogtDj/9lJVf9TW39fq9L8zME0MvNLSUj3wwAOaMWOGoqOjfcqKi4sVFRXlsywqKkplZWWSpJKSkirLS0pKzM8Xlkkyt/dXbGzjaq3vL6czQg0aREqSIiMjFBnAz7Wxz0sdw+k8vywizOodTsfwZ52IyPP/FqroDzvU2y7nJpjHqOiDcG9HuNdbUsjbYddzE8xjSJX/PjidEWra9CqFmm0D0pIlS9SlSxf17t37ojKXy3VRmCkrKzODVFXlMTExPmHI5XKZ30tSTExMtep48uQZGUa1NrkspzNCHo9X586VS5LKy70qD+Dn2tjnpY7h8ZTL6YyUN8zqHU7H8Gcdb/n5pzQ9nnIZhj3qbZdzE8xjVPRBuLcjnOtdcQUh1O2w47kJ9jGkyn8fPB6vioq+lMcT+KfLHQ7/L27YNiD95S9/UWFhoVJSUiT9L8S8+uqrGjp0qAoLC33WLywsNG+bxcfHV1oeFxen+Ph4Sedv0yUmJprfS1JcXFy16mgYCnhACvT+Qq2iPXWsWWGn4vzXtZ+vcEQfhBbn316q6o/a+PtaXbYdg/Tss8/qpZde0osvvqgXX3xR/fr1U79+/fTiiy/K7XZr586dMr46e4ZhaMeOHXK73ZIkt9utrKwsc1/5+fnKz8+X2+1WfHy8EhISfMqzsrKUkJBw0bglAABQP9n2ClKrVq18Pl911fn7kW3atFFsbKwWLlyouXPn6sc//rHWrVun4uJiDRo0SJI0evRojRkzRsnJyUpKStLcuXPVp08ftW7d2ixfsGCBrr32WknSwoULNW7cuCC2DgAA2JltA9KlNGrUSE8++aQeeOABbdiwQe3bt9fy5cvVsGFDSVJKSooefPBBLVq0SKdOnVLPnj01e/Zsc/vx48fr5MmTmjx5siIjIzVy5EiNHTs2RK0BAAB2EzYB6eGHH/b53LVrV73wwgtVrj98+HANHz680rLIyEhlZGT4zK4NAABQwbZjkAAAAEKFgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEAABgQUACAACwICABAABYEJAAAAAsCEgAAAAWBCQAAAALAhIAAIAFAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACAha0D0vHjxzVlyhSlp6erd+/emjdvnkpLSyVJubm5Gjt2rJKTkzV48GD985//9Nn2nXfe0dChQ+V2u3XbbbcpNzfXp3zVqlXq3bu3UlJSdN9996m4uDho7QIAAPZm24BkGIamTJmi4uJiPffcc3rsscf05ptv6vHHH5dhGJo0aZKaN2+uzZs364c//KEmT56so0ePSpKOHj2qSZMmafjw4dq0aZOaNWumO++8U4ZhSJJeffVVLVmyRA8++KBWr16tnJwczZ8/P5TNBQAANmLbgHTw4EFlZ2dr3rx5+uY3v6m0tDRNmTJFW7du1Xvvvafc3Fw9+OCDuv766zVx4kQlJydr8+bNkqSNGzeqS5cuGjdunL75zW9q3rx5ysvL0/vvvy9JWrNmjW6//Xb17dtXXbt21axZs7R582auIgEAAEk2DkhxcXF6+umn1bx5c5/lX3zxhXJyctSpUyc1bNjQXJ6amqrs7GxJUk5OjtLS0syymJgYde7cWdnZ2SovL9cHH3zgU56cnKxz585p7969tdsoAAAQFpyhrkBVmjRpot69e5ufvV6v1q5dqx49eqigoEAtWrTwWT82NlbHjh2TpEuWnz59WqWlpT7lTqdTTZs2Nbf3l8NR3VaFZp+hVNGeOtassFNx/h0O6as7zQiRuvY7Hm44//ZSVX84HKH/G2vbgGQ1f/587dmzR5s2bdKqVasUFRXlUx4VFaWysjJJUnFxcZXlJSUl5ueqtvdXbGzj6jbDL05nhBo0iJQkRUZGKDKAn2tjn5c6htN5fllEmNU7nI7hzzoRkecvFlf0hx3qbZdzE8xjVPRBuLcj3OstKeTtsOu5CeYxpMp/H5zOCDVtepVCLSwC0vz587V69Wo99thjateunVwul4qKinzWKSsrU3R0tCTJ5XJdFHbKysrUpEkTuVwu87O1PCYmplr1OnnyTMD/Ne50Rsjj8ercuXJJUnm5V+UB/Fwb+7zUMTyecjmdkfKGWb3D6Rj+rOMt90qSPJ5yGYY96m2XcxPMY1T0Qbi3I5zrXXEFIdTtsOO5CfYxpMp/Hzwer4qKvpTnq3UCyeHw/+KGbccgVZg9e7ZWrlyp+fPn63vf+54kKT4+XoWFhT7rFRYWmrfNqiqPi4tT06ZN5XK5fMo9Ho+KiooUFxdXrboZRu181SUV7aljzQo7Fee/rv18hSP6ILQ4//ZSVX/U1t/X6vS/rQPSkiVLtG7dOj366KMaMmSIudztduvDDz80b5dJUlZWltxut1melZVllhUXF2vPnj1yu92KiIhQUlKST3l2dracTqc6dOgQhFYBAAC7s21AOnDggJYtW6af//znSk1NVUFBgfmVnp6uli1bKiMjQ/v27dPy5cu1a9cujRw5UpI0YsQI7dixQ8uXL9e+ffuUkZGhxMRE3XDDDZKkW2+9Vc8884y2bdumXbt2aebMmRo1alS1b7EBAIC6ybZjkN544w2Vl5frD3/4g/7whz/4lH300UdatmyZpk+fruHDh6tNmzZaunSpEhISJEmJiYlavHixHnroIS1dulQpKSlaunSpHF/dfB4yZIjy8vI0Y8YMlZWVacCAAZo2bVrQ2wgAAOzJtgFpwoQJmjBhQpXlbdq00dq1a6ssv/HGG3XjjTfWeP8AAKD+su0tNgAAgFAhIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEAABgQUACAACwICABAABYEJAAAAAsCEgAAAAWBCQAAAALAhIAAIAFAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAot4GpNLSUt13331KS0tTr169tGLFilBXCQAA2IQz1BUIlczMTO3evVurV6/W0aNH9dvf/lYJCQkaOHBgqKsGAABCrF4GpLNnz2rjxo166qmn1LlzZ3Xu3Fn79u3Tc889R0ACAAD18xbb3r175fF4lJKSYi5LTU1VTk6OvF5vCGsGAADsoF4GpIKCAl1zzTWKiooylzVv3lylpaUqKioKXcUAAIAt1MtbbMXFxT7hSJL5uayszO/9RERIhhHQqsnhkNp+/Wtyuc7XJ6HVtXK5ohQVoM+1sc9LHcPlilKEM0IJieFV73A6hl/bJF6rhjHRckY6Zdik3rY5N0E8RsxV0fJ6vGHfjnCut+Orz06nk3MT4mNU9fvQstW1cjjO/40NNIfD/3XrZUByuVwXBaGKz9HR0X7vp1mzxgGtV4U7fjG6VvYLAAD8Uy9vscXHx+vzzz+Xx+MxlxUUFCg6OlpNmjQJYc0AAIAd1MuA1LFjRzmdTmVnZ5vLsrKylJSUpIjauKYHAADCSr1MAzExMRo2bJhmzpypXbt2adu2bVqxYoVuu+22UFcNAADYgMMwAj3MODwUFxdr5syZeu2119SoUSONHz9eY8eODXW1AACADdTbgAQAAFCVenmLDQAA4FIISAAAABYEJAAAAAsCEmrs9ddfV/v27X2+pkyZIknas2ePbr75Zrndbo0YMUK7d+/22Xbr1q3q37+/3G63Jk2apM8++ywUTagTysrKNGvWLHXv3l3f/va39eijj6piaCH9EBxbtmy56Hehffv26tChgyT6IVjy8/M1ceJEdevWTf369dOqVavMMvogeE6ePKkpU6YoLS1NN910k7Zs2WKW5ebmauzYsUpOTtbgwYP1z3/+02fbd955R0OHDpXb7dZtt92m3NzcYFf/fwyghpYtW2ZMnDjROHHihPl16tQp48svvzR69uxpPPzww8b+/fuN2bNnG9/+9reNL7/80jAMw8jJyTG6du1qvPDCC8Z///tf46c//akxYcKEELcmfP3ud78zBgwYYOTk5BjvvPOOccMNNxjPP/88/RBExcXFPr8HR48eNW666SZj7ty59EMQjRo1yrj77ruNQ4cOGa+//rrhdruN1157jT4IIq/Xa9xyyy3GzTffbHz44YfG3/72N6N79+7Gq6++ani9XuP73/++cc899xj79+83nnjiCcPtdht5eXmGYRhGXl6ekZycbDzzzDPGxx9/bPzqV78yhg4dani93pC0hYCEGrvnnnuMhQsXXrR848aNRr9+/cwfaq/Xa9x0003G5s2bDcMwjGnTphm//e1vzfWPHj1qtG/f3vj000+DU/E65PPPPzc6depkbN++3Vz25JNPGv/3f/9HP4TQE088YfTv398oLS2lH4KkqKjIaNeunfHRRx+ZyyZPnmzMmjWLPgiiXbt2Ge3atfM5d08++aQxatQo45133jGSk5PNYGoYhnH77bcbixYtMgzDMB5//HHjpz/9qVl29uxZIyUlxXjvvfeC14ALcIsNNXbgwAG1bdv2ouU5OTlKTU2V46u3AjocDnXr1s2cuTwnJ0dpaWnm+i1btlRCQoJycnKCUe06JSsrS40aNVJ6erq5bMKECZo3bx79ECJFRUV66qmndM899ygqKop+CJLo6GjFxMRoy5YtOnfunA4ePKgdO3aoY8eO9EEQ5ebmqlmzZmrdurW5rH379tq9e7eysrLUqVMnNWzY0CxLTU2tsh9iYmLUuXNnn7deBBMBCTViGIYOHTqkf/7zn/re976n/v37a8GCBSorK1NBQYFatGjhs35sbKyOHTsmSTpx4sQly+G/3NxctWrVSi+++KIGDhyo7373u1q6dKm8Xi/9ECLPP/+8WrRooYEDB0oS/RAkLpdLM2bM0Pr16+V2uzVo0CB95zvf0c0330wfBFHz5s115swZFRcXm8uOHTsmj8dz2X64XHmwOUNyVIS9o0ePqri4WFFRUXr88cd15MgRzZkzRyUlJebyC0VFRamsrEySVFJScsly+O/s2bM6fPiw1q1bp3nz5qmgoEAzZsxQTEwM/RAChmFo48aN+tnPfmYuox+C58CBA+rbt6/uuOMO7du3T7Nnz9a3vvUt+iCI3G63WrRoodmzZ+v+++9XQUGBVq5cKen8AyWXOs+X66dgIyChRlq1aqXt27fr6quvlsPhUMeOHeX1ejVt2jSlp6df9ANdVlam6OhoSef/pVdZeUxMTNDqX1c4nU598cUXWrhwoVq1aiXpfHh9/vnn1aZNG/ohyD744AMdP35cQ4YMMZdVdZ7ph8B69913tWnTJv39739XdHS0kpKSdPz4cf3hD39Q69at6YMgcblcevzxx3X33XcrNTVVsbGx+tnPfqZ58+bJ4XDUqB+aNGkStPpfiFtsqLGmTZua9/Ql6frrr1dpaani4uJUWFjos25hYaF56TQ+Pr7S8ri4uNqvdB0TFxcnl8tlhiNJuu6665Sfn1/leaYfas8//vEPpaWl6eqrrzaX0Q/BsXv3brVp08b8YytJnTp10tGjR+mDIOvatav+9re/6e2339Zbb72l6667Ttdcc42+9rWvhVU/EJBQI//4xz90ww03+Nxn/u9//6umTZsqNTVVO3fuNOfiMQxDO3bskNvtlnT+EmxWVpa5XX5+vvLz881y+M/tdqu0tFSHDh0ylx08eFCtWrWS2+2mH4Js165d6tatm88y+iE4WrRoocOHD/tcgTh48KASExPpgyAqKirS6NGj9fnnnysuLk5Op1NvvfWW0tPT5Xa79eGHH6qkpMRcPysrq8p+KC4u1p49e0LXDyF5dg5h78yZM0bv3r2N3/zmN8aBAweMt956y+jVq5exfPly48yZM0aPHj2M2bNnG/v27TNmz55t9OzZ03y0c8eOHUbnzp2NDRs2mHOOTJw4McQtCl8TJkwwbrnlFuO///2v8fbbbxs9evQwVq9eTT+EQN++fY2tW7f6LKMfguP06dNGz549jWnTphkHDx403njjDSM9Pd14/vnn6YMg+8EPfmBkZGQYn376qbFhwwYjKSnJyMnJMTwejzF48GDj7rvvNj7++GPjySefNJKTk815kHJzc42kpCTjySefNOdB+v73v888SAg/H3/8sTF27FgjOTnZ6Nmzp7F48WLzBzknJ8cYNmyYkZSUZIwcOdL48MMPfbbdvHmzceONNxrJycnGpEmTjM8++ywUTagTTp8+bUybNs1ITk42vvWtb9EPIZSUlGS8/fbbFy2nH4Jj3759xtixY41u3boZ/fv3N1auXMnvQggcOHDA+OlPf2q43W5jyJAhxt/+9jez7JNPPjF+8pOfGF26dDGGDBli/Otf//LZ9q233jIGDBhgdO3a1bj99ttDOheVwzC+uuYIAAAASYxBAgAAuAgBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISgJA6cuSI2rdvryNHjoS0Hu3bt9f27dtrtO1f//pXnTx5MsA1Ou/dd9/VgQMHamXfAKpGQAKAK5CXl6e7777b58XNgTR27NiL3nAOoPYRkADgCvC2JqBuIiABsI3Tp09r2rRp6tatm3r16qXZs2erpKREkrR9+3b169dPf/zjH9W7d28lJydr2rRpKisr82vfX3zxhTIyMvStb31LXbp00cCBA7Vt2zafdf79739rwIABcrvd+tWvfqVTp06ZZY8++qh69eqlrl27asyYMdq3b58k6bvf/a753y1btmjx4sW688479ZOf/ETp6el6//33dfz4cU2ZMkXdu3dXly5d9KMf/UhZWVnmvg8fPqzx48crJSVFffr00Zo1ayRJ/fr1kyTddtttWrx4cQ3PKoCaICABsI3p06frzJkzev7557Vs2TJ98MEHevDBB83yEydO6NVXX9XTTz+txYsX67XXXtOLL77o177nzp2rQ4cOacWKFdq6davS0tI0ffp0n4D13HPPafr06Xruued06NAhzZs3T5L0+uuva/369Xr88ce1detWNW/eXBkZGZKkjRs3mv8dPHiwJOmNN97Q0KFDtXr1anXt2lVTp05VeXm51q1bpxdffFHx8fGaOXOmJKm0tFTjxo3TVVddpQ0bNmjGjBl67LHH9Oabb2rTpk2SpMWLF2vcuHFXdG4BVJMBACGUm5trtGvXzjh8+LDRoUMH4/Tp02bZ3r17zWXvvfee0a5dO+Pjjz82yydNmmTcf//9fh1n8+bNxkcffWR+PnDggNGuXTvj6NGjhmEYRrt27Yy1a9ea5du3bzc6depknDlzxli5cqXRs2dPIy8vzzAMwzh58qTx73//26f+ubm5hmEYxqJFi4xvf/vb5n68Xq+xatUqIz8/31z29ttvGx06dDAMwzC2bdtmJCcnG2fOnDHLN23aZLz11ltmvd577z2/2gggcJyhDmgAIElvv/22vF6vvvOd7/gs93q9Onz4sPm5TZs25veNGjWSx+Pxa//Dhg3Ttm3btGHDBh08eFAffvihJKm8vNxcJykpyfy+U6dO8ng8+vTTTzVkyBCtXbtW3/3ud5WcnKz+/ftr5MiRVR6rVatW5vcOh0OjR4/Wyy+/rB07dujQoUPavXu3vF6vJOnQoUO67rrr1KhRI3ObESNG+NUmALWHgATAFjwejxo3bqzNmzdfVBYfH6+cnBxJUlRUlE+Z4ecg6XvvvVc7d+7UD3/4Q40ePVpxcXG65ZZbfNaJjIy8aL8NGjRQXFyc/vrXv+pf//qX3nzzTT3zzDPasGFDlbf3XC6X+b3X69W4ceN0+vRpDR48WP369dO5c+c0efJkSZLTyf+GATtiDBIAW+jdu7fOnDkjh8OhNm3aqE2bNiopKVFmZqbfA7Gr8sUXX2jr1q167LHHNGXKFN10003mAOwLA9bHH39sfr9r1y41aNBAiYmJeuutt7Rx40b16dNHs2bN0p/+9Cd98skn+vjjj+VwOC557P379+vf//63Vq1apV/84hfq06ePTpw4YR67bdu2Onz4sM80AY888ojmzJlzRW0GcGUISABsweVyqXfv3po6dap27dqlDz/8UBkZGTp79qyaNGlyRfuOiopSTEyMXnvtNR05ckT/+Mc/zMHfF4avxx57TO+++66ys7M1Z84c/fjHP1ZMTIy8Xq8yMzP1+uuv68iRI9qyZYtiYmLUtm1bxcTESJL27t2rL7/88qJjN2nSRBEREfrLX/6ivLw8vfLKK+YTaWVlZerVq5eaN2+uGTNm6MCBA3rjjTe0bt069erVS5LUsGFD7du3T2fOnLmicwCgeghIAGwjMzNTiYmJGjt2rO644w5dd911evTRR694v1FRUZo/f75effVVDRkyRA8//LB++ctfKi4uTv/973/N9e644w5Nnz5dd9xxh1JSUjR16lRJ5x+3nzJliubNm6dBgwbp5Zdf1rJly3T11VerWbNm+sEPfqC7777bfKLtQtdee61mzpypp556SkOHDtXy5ct1//33y+l0as+ePXI6nVq2bJlOnDihH/3oR5o7d67uvfde9enTR5I0ZswYZWZm8pg/EGQOw98b+AAAAPUEV5AAAAAseHwCQNibO3euOaliZSZOnKhf/OIXQawRgHDHLTYAYe+zzz675CDmq6++Wk2bNg1ehQCEPQISAACABWOQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEAABgQUACAACwICABAABY/D8tOJIRUK1lBwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.histplot(x='len_abstract', data=df)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.to_parquet(\"/Users/luis.morales/Desktop/arxiv-paper-recommender/data/processed/reduced_arxiv_papers.parquet.gzip\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.11.4 ('arxiv-env': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "aae17c2ae2f38cc6f211be9b71a2aa280701d8462782cbc1f67caa83a1603363" } } }, "nbformat": 4, "nbformat_minor": 2 }