import pandas as pd from gensim.similarities import SparseMatrixSimilarity import argparse import logging import time from utils.utilities import read_yaml_config, validate_and_create_subfolders from utils.mlutilities import * import logging import sys logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s", handlers=[ logging.FileHandler("debug.log"), logging.StreamHandler(sys.stdout) ] ) model_configurations = read_yaml_config("/Users/luis.morales/Desktop/arxiv-paper-recommender/src/models/configs.yaml") if __name__ == "__main__": """ Example: python3 ./src/models/train_recommender.py --modelsize Medium """ # Define and parse command-line arguments parser = argparse.ArgumentParser(description='ArXiv Paper Recommender CLI') parser.add_argument('--modelsize',choices=["Large", "SubLarge", "Medium", "Small"], default=None, type=str, help='Model Size') args = parser.parse_args() model_size = args.modelsize start = time.time() if model_size is None: raise Exception("The `modelsize` flag was no passed to the CLI.") model_config = model_configurations["GensimConfig"][model_size] model_name = model_configurations["GensimConfig"][model_size]["ModelName"] dataset_fraq_split = model_configurations["GensimConfig"][model_size]["DataSetFracSplit"] random_seed = model_configurations["GensimConfig"][model_size]["RandomSeedSplit"] logging.info(f"Started training of {model_name} Model.") validate_and_create_subfolders( model_name=model_name ) logging.info(f"Model Folder `{model_name}` was created successfully.") if dataset_fraq_split is None: df = pd.read_parquet("/Users/luis.morales/Desktop/arxiv-paper-recommender/data/processed/reduced_arxiv_papers.parquet.gzip") logging.info(f"The full text Corpus was readed.") else : df = pd.read_parquet("/Users/luis.morales/Desktop/arxiv-paper-recommender/data/processed/reduced_arxiv_papers.parquet.gzip") \ .sample(frac=dataset_fraq_split, random_state=random_seed) \ .reset_index(drop=True) logging.info(f"A random split of {dataset_fraq_split}% was applied on the Text Corpus ") logging.info(f"Dimensions of the dataset: {df.shape}") df.to_parquet(f"/Users/luis.morales/Desktop/arxiv-paper-recommender/models/data/{model_name}.parquet.gzip", compression='gzip') logging.info(f"The Dataset used for this training was successfully saved in: `/Users/luis.morales/Desktop/arxiv-paper-recommender/models/data/{model_name}.parquet.gzip`.") corpus = df['cleaned_abstracts'].to_list() tokenized_corpus = gensim_tokenizer(corpus) logging.info(f"Dictionary Learned on the {model_name} corpus dataset.") dictionary = get_gensim_dictionary(tokenized_docs=tokenized_corpus, dict_name=model_name, save_dict=True) logging.info("Dictionary Saved Locally.") BoW_corpus = [dictionary.doc2bow(doc, allow_update=True) for doc in tokenized_corpus] tfidf_model = TfidfModel(BoW_corpus) logging.info(f"TD-IDF {model_name} Model was successfully trained.") tfidf_model.save(f"/Users/luis.morales/Desktop/arxiv-paper-recommender/models/tfidf/{model_name}.model") logging.info(f"Model: {model_name} was successfully saved.") index = SparseMatrixSimilarity(tfidf_model[BoW_corpus], num_features=len(dictionary)) logging.info(f"The Similarities Sparse Matrix was successfully created.") index.save(f"/Users/luis.morales/Desktop/arxiv-paper-recommender/models/similarities_matrix/{model_name}") logging.info(f"The Similarities Matrix was successfully saved for the model: {model_name}.") end = time.time() total_time = end - start logging.info(f"Full Training of {model_size} model took {total_time} secs.") logging.info(f"The {model_name} Model was successfully trained! yei :)")