lewispons commited on
Commit
58553e2
·
1 Parent(s): 1f7d84d

Feat: Improve UI

Browse files
Files changed (2) hide show
  1. .gitignore +1 -0
  2. app.py +38 -15
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ arxiv-env/
app.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  from streamlit_extras.no_default_selectbox import selectbox
3
  import pandas as pd
4
  from PIL import Image
5
- from random import choices
6
  import zipfile
7
  import os
8
 
@@ -25,6 +25,34 @@ def folder_exists(folder_path):
25
  return False
26
 
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  def unzip_file(zip_file_path: str, modelname: str = model_name):
30
  if not folder_exists(f"models/{modelname}"):
@@ -76,36 +104,31 @@ def load_sparse_matrix(path: str):
76
 
77
  if app_mode == "Generate Recomendations":
78
  welcome_text = """
79
- <div style="text-align: justify">Welcome to my paper recommendation project! This App is here to simplify your search for relevant scientific and academic papers. Our intelligent recommendation system, powered by <strong>Machine Learning and natural language processing</strong>, analyzes keywords, abstracts, titles, authors, and more to provide personalized suggestions based on your interests. Say goodbye to information overload and let us guide you towards new horizons in your quest for knowledge.
80
  """
81
  subjects = """
82
- Our model is trained to recommend papers in various domains, including:
83
  - Mathematics
84
  - Statistics
85
  - Electrical Engineering
86
  - Quantitative Biology
87
  - Economics
88
 
89
- Say goodbye to information overload and let us guide you towards **new horizons** in your quest for knowledge. Join us and discover a streamlined way to **explore, learn, and stay ahead** in your field. Welcome aboard!
90
  """
91
  st.markdown(welcome_text, unsafe_allow_html=True)
92
  st.markdown(subjects)
93
  st.divider()
94
 
95
 
 
96
  with st.container():
97
- examples = """
98
- ### Examples of prompts
99
- - "Can you recommend papers that explore the application of deep learning in computer vision for object detection, image segmentation, and video analysis?"
100
- - "Can you recommend papers that explore the use of deep reinforcement learning for autonomous driving, including perception, planning, and control?"
101
- - "Could you provide papers on image and video compression algorithms based on the latest video coding standards, such as HEVC and AV1?"
102
- - "Can you suggest recent papers on behavioral economics that investigate the role of emotions and biases in decision-making under uncertainty, particularly in the context of financial markets?"
103
-
104
- """
105
- st.markdown(examples)
106
  st.divider()
107
-
108
-
109
  with st.spinner('The model binaries are unziping ...'):
110
  zip_file_path = "models/GrammarGuru.zip"
111
  unzip_file(zip_file_path)
 
2
  from streamlit_extras.no_default_selectbox import selectbox
3
  import pandas as pd
4
  from PIL import Image
5
+ from random import choice
6
  import zipfile
7
  import os
8
 
 
25
  return False
26
 
27
 
28
+ def get_random_requests(user_requests_dict, num_elements=5):
29
+ result_list = []
30
+ keys = list(user_requests_dict.keys())
31
+
32
+ for _ in range(num_elements):
33
+ random_key = choice(keys)
34
+ random_value = choice(user_requests_dict[random_key])
35
+ result_list.append([random_key, random_value])
36
+
37
+ return result_list
38
+
39
+ def generate_html_table(random_requests):
40
+ # Start building the HTML table
41
+ table_html = "<table>"
42
+
43
+ # Add the table header
44
+ table_html += "<tr><th>Category</th><th>Request</th></tr>"
45
+
46
+ # Add each row to the table
47
+ for request in random_requests:
48
+ category, request_text = request
49
+ table_html += f"<tr><td>{category}</td><td>{request_text}</td></tr>"
50
+
51
+ # Close the table
52
+ table_html += "</table>"
53
+
54
+ return table_html
55
+
56
 
57
  def unzip_file(zip_file_path: str, modelname: str = model_name):
58
  if not folder_exists(f"models/{modelname}"):
 
104
 
105
  if app_mode == "Generate Recomendations":
106
  welcome_text = """
107
+ <div style="text-align: justify">Welcome to my paper recommendation project! This App is here to simplify your search for relevant scientific and academic papers. This intelligent recommendation system, powered by <strong>Machine Learning and natural language processing</strong>, analyzes keywords, abstracts, titles, authors, and more to provide personalized suggestions based on your interests. Say goodbye to information overload and let me guide you towards new horizons in your quest for knowledge.
108
  """
109
  subjects = """
110
+ This model is trained to recommend papers in various domains, including:
111
  - Mathematics
112
  - Statistics
113
  - Electrical Engineering
114
  - Quantitative Biology
115
  - Economics
116
 
117
+ Say goodbye to information overload and let me guide you towards **new horizons** in your quest for knowledge. Join me and discover a streamlined way to **explore, learn, and stay ahead** in your field. Welcome aboard!
118
  """
119
  st.markdown(welcome_text, unsafe_allow_html=True)
120
  st.markdown(subjects)
121
  st.divider()
122
 
123
 
124
+ st.subheader("Examples")
125
  with st.container():
126
+ examples = get_random_requests(user_requests_tests)
127
+ html_table = generate_html_table(examples)
128
+ st.write(html_table, unsafe_allow_html=True)
 
 
 
 
 
 
129
  st.divider()
130
+
131
+
132
  with st.spinner('The model binaries are unziping ...'):
133
  zip_file_path = "models/GrammarGuru.zip"
134
  unzip_file(zip_file_path)